
Field-Sensitive Pointer Analysis for C Programs with Integer/Pointer Conversions

 Eiichiro CHISHIRO 1

ABSTRACT We present a field-sensitive pointer analysis algorithm for C in the presence of type
conversion between integer and pointer. While field-sensitive analysis can give precise solution, it is
notoriously difficult to design a correct analysis which handles all low-level dirty features of C. Most
difficulties stem from arbitrary integer/pointer conversions allowed as an implementation-defined feature.
To incorporate this feature into pointer analysis is not so easy as expected, and previous approaches are
either unsound or greatly imprecise. In this paper, we first define the formal semantics which incorporates
all low-level features of C and show that it is hardly to have precise analysis if arbitrary integer/pointer
conversions are allowed. To address this, we identify the language restriction which many compiler
developers implicitly assume and derive a precise analysis algorithm as an approximation of the semantics.
Our analysis is shown to be sound under the restriction.

Keywords compiler, pointer analysis

(Received September 20, 2013)

Pointer analysis is a generic term for program analysis

concerning various properties of pointers. Among a variety of

pointer analysis, here we deal with the class of may points-to

analysis problem, i.e., given a program, calculating all memory

regions to which each pointer may point. This kind of

information is known to be useful for compiler optimization,

program verification, program understanding and so on.

 Many algorithms have been proposed over the last two

decades10). They can be classified by several aspects such as

flow-sensitivity, field-sensitivity, context-sensitivity, object-

sensitivity.

 In this paper, we concentrate on the issues of field-sensitivity.

Informally, analysis is called field-sensitive if it can distinguish

each field of structure instead of treating a whole structure

atomically. Field-sensitive analysis can give more precise

solution than the field-insensitive one, and can provide more

opportunities for compiler optimizations.

 For type-safe languages such as Java or a type-safe subset of

C, field-sensitive analysis is as easy as the field-insensitive one.

However, in full C, field-sensitivity brings many complicating-

factors, and makes it quite difficult to design a correct analysis6).

 The main challenge is to model correctly the layout of object,

or memory block. In C, we can make an object of complex

structure which is a combination of structures, unions, and

arrays, and make an internal pointer to a field in the middle of

a structure object. Moreover, we can access an object through

more than one types by using a cast operator or union type.

Thus, we cannot simply model an object as a mapping from

field identifiers to values as in type-safe languages.

 Since the layout of object is implementation-defined,

programs which depend on it are not strictly-conforming. Thus

algorithms which only treat ANSI C programs can ignore some

of these intricate issues. However, when we develop a pointer

analysis for a compiler, we should handle all implementation-

defined behaviors correctly with respect to its specification.

 Another Challenge, which has been overlooked in many

works is that most compilers allow the conversion between

integer and pointer if they are the same size. Here we use an

integer type as a representative of all non-pointer types

convertible to/from pointer types. The case for e.g., floating

type is similar.

 For example, the following code is legal if the size of int

and pointer are both four bytes:

1 Associate Professor/Dept. of Computer and Information

Science chishiro@st.seikei.ac.jp

─63─

成 蹊 大 学 理 工 学 研 究 報 告 Vol.50 No.2(2013.12)成蹊大学理工学研究報告
J. Fac. Sci.Tech., Seikei Univ.
Vol.50 No.2 (2013)pp.63-72

struct S { int m, n; } s; int i, *p;

i = (int)&s;

p = (int *)(i + 4);

We can use p to access s.n. This code may seem artificial, but

this kind of conversion is widely used, e.g., in va_arg macro

of the standard library.

 Integer/pointer conversion is also used in embedded

programs which interact with auxiliary devices through

memory-mapped I/O ports. To access the memory region for

the I/O ports, it must create a pointer to the I/O port from the

system-specific integer value which represents the address of

the I/O ports.

 A naive but popular approach to this problem is to

approximate an integer value as the set of arbitrary addresses.

We call it unknown pointer approach1). This approach is

obviously sound as it assumes that an integer value may point

to any locations. Moreover, if no such conversion exists in the

target program, there is no loss of precision and performance

of analysis. However, if such conversion exists, and if there is

an assignment *p = e where p has been assigned some

integer value and e is an expression of integer type, the impact

on the precision is disastrous. As both sides of the assignment

can represent arbitrary locations (we use the term location and

address interchangeably), every pointer is considered to point

to any location by the assignment! Embedded programs using

memory-mapped I/O ports match this case. This is serious in

particular for an interprocedural analysis, since it makes such

analysis completely useless.

 Another approach is to track integer values as well as pointer

values14). When a pointer value is created from an integer value,

we can recover the original pointer value from this information.

However, it is costly and difficult to perform precise integer-

tracking. For example, an integer value can be copied indirectly

through control flow. This is serious in particular for field-

sensitive analysis, since we need to calculate the corresponding

field from an integer value which may be the result of arbitrary

arithmetic operations.

 As we will show in Section 3, the integer/pointer conversion

problem interacts with the object layout problem in a

complicating way, and to design correct field-sensitive analysis,

we need to consider all possible interactions exhaustively. It is

very difficult to do in an ad-hoc way.

Contributions In this paper, we present an analysis which is

field-sensitive and can handle programs with integer/pointer

conversions safely and precisely .

 To this end, we identify the language restriction which is

necessary to do such analysis. The restriction is very weak. It

only excludes programs which exploit the accidental

coincidence between an integer value and the address of

variables.

 We give a formal model of memory which incorporates the

restriction. The model can represent the meaning of non-well-

typed memory accesses without going down to low-level,

implementation-dependent details (e.g., byte representation of

values). The meaning is the upper-bound of all specific

compiler implementations, and thus our analysis based on it

can be applicable to any compilers which accept the restriction

above. This also incorporates the memory region denoted by

system-specific integer values, which is ignored in previous

works.

 The model enables us to reduce the integer/pointer

conversion problem by a simple reachability problem. The

soundness of the analysis can be proved in a straightforward

way. As far as we know, this is the first work to prove the

soundness of pointer analysis for C in the presence of arbitrary

type conversions.

 Our analysis keeps field-sensitivity inside an array, while it

does not distinguish each element of an array. This level of

precision is desirable for many compiler optimizations. We do

not know any works which achieve this in the presence of

arbitrary type conversions.

First, we introduce a target language called RML (Register-

Memory Language), which captures all low-level features of C

and also is amenable to formal treatment.

 Basically, RML is similar to low-level intermediate

representations used in compilers. In particular, RML

instructions are very similar to the one used in LLVM12), except

that field and index are combined into a single complex

instruction in LLVM.

An RML Program is a tuple . and

 are type environments for type names and registers, All

operations in a program are performed through (virtual)

─64─

成 蹊 大 学 理 工 学 研 究 報 告 Vol.50 No.2(2013.12)

registers . Registers are strongly typed, and their types are

given by . assigns an instruction to each code location

in . Representative instructions of RML are shown in

Table 1. represents control flow between instructions.

 is the code location of program entry.

 Informally, an execution of a program starts at ,

and follows the control flow defined in . At each step, an

instruction is fetched from and interpreted.

 The meanings of most instructions are intuitive. There is no

variable declaration. All variables are created by

where holds the address of a created memory block (object).

The address operator & in C is replaced with a use of the register.

All address calculations in C (field references, array

subscripting, and pointer arithmetic) are realized by field and

index. Each field of structure or union is identified by a field

index n: the first field is 0, the second is 1, and so on. Elements

of array are designated by . is a pointer to an

element of an array, and is an index relative to . There

are only two instructions which interact with memory.

reads the content of the address into , and

 writes the value of into the address .

 To concentrate on the subject of this work, we omit several

language constructs such as the free operation, function calls,

conditional branches and numeric operations. To support these

constructs causes no theoretical difficulty.

 Types of RML are inductively defined by the following

syntax:

where , , and .

 Types of RML are quite similar to C. An integer type

is parameterized with the byte size . As each field is

identified by a field index, fields of structure and union are

represented just by a list of type of each field. is

introduced to represent recursive types. We assume that all type

names used in a program are defined in the type name

environment of .

An execution state s of a program is a tuple of

. For state , we represent the

component of by . is the current code location.

 and are the contents of registers and memory. We will

explain in Section 2.3. is the set of allocated locations.

 associates a location with the code location which allocates

it. For each location of a block , assigns the top

location of to . For a program , we write the set of initial

states as , all states in the execution of P as

, and a transition from to as .

 We assume there are two disjoint sets of data locations,

 and . is used for allocation by .

corresponds to the memory region which is designated by a

system-specific constant address. We assume is

contiguous.

The dynamic semantics of RML is defined as a state transition

system. For the lack of space, we omit the full detail of the

semantics and concentrate on a formal model of memory,

which plays the central role in the design of pointer analysis.

 It is simple for type-safe programs. Every value loaded from

a location has the preceding store to of the same type. We

can formalize this by simple axioms.

 However, in the presence of casts or unions, a value of type

 loaded from a location may not have the preceding store

of type to . A program may load a pointer value which was

stored as an integer value (thus an implicit casting occurs at the

load). Or worse, a program may load a pointer value which is

composed of parts of two integer values at successive locations.

 A common approach in the area of verification is to model a

memory as a global array of byte (known as a RAM model2)).

A store of a value is modeled by a decomposition of the value

into a sequence of bytes and updates of the global array. A load

of a value is modeled by a load of the global array and a

composition of these bytes.

 The problem of such byte-level model is that we need to

formalize the details of all conversions and arithmetic

operations to specify a location which is created from an integer.

This is very tedious. It also makes the model heavily depend on

a specific implementation policy.

Instruction informal meaning

─65─

成 蹊 大 学 理 工 学 研 究 報 告 Vol.50 No.2(2013.12)

 To address these problems, we propose the following

approach:

model a memory as a function from locations and types to

values, and a type map which maintains the type of the

value stored at each location;

if a load from a location is well-typed, that is, the type of the

load matches the type of in , the loaded value is the value

stored at ;

if a load from a location is not well-typed, the loaded value

should is one of values satisfying a certain condition (which

will be given later).

At each store of type to , we update the type map by

first removing all entries which overlap with stored locations

 and adding the new entry to .

 Implementation-dependent feature is parameterized in the

condition used at step 3. For type-safe C, it is false; this means

such non-well-typed load causes undefined behavior. For byte-

level C, it is the value which is composed of a sequence of bytes

in in a specific way.

 The decision of the condition has great impact on the

applicability and precision of the analysis based on it. Roughly,

the weaker the condition, the analysis based on it is more

applicable to many compilers. False is the strongest, and the

analysis based on this condition is unsound for almost all C

compilers which allow non-well-typed load under certain

conditions.

 On the other hand, the stronger the condition, the analysis

based on it can be more precise since the stronger condition

decreases the possible values of a non-well-typed load. The

condition used in byte-level C is strong in the sense that it

determines the value of a non-well-typed load uniquely. Thus

if we can analyze the value flow of all bytes, we can make the

very precise analysis with respect to non-well-typed load.

 However, as we said in the introduction, it is very difficult to

track integer (non-pointer) values precisely. If we give up such

integer-tracking, we need to consider arbitrary locations as the

result of non-well-typed load. We have shown that this makes

the analysis greatly imprecise.

 In this paper, we propose the following condition: A pointer

value that can be the result of non-well-typed load should be

one of the locations which have been accessed as integer, that

is, satisfy the language restriction defined below.

Definition 1 (Language Restriction). If a location is created

from an integer, should satisfy one of the conditions below

prior to the creation:

A location was converted to integer type by a cast operator.

All locations belonging to the same block of are also

regarded as converted.

A location was stored at some location , and then the

content of was loaded as integer type by any means.

A location is in the set of system-specific locations which is

disjoint from any blocks allocated by a program.

This condition just excludes the case that a pointer to a variable

 is created from an integer value which is accidentally the

same as the location of . On the other hand, this does not

exclude any way of propagation of integer values. Thus we

believe that this condition is acceptable for most compilers.

 We present how to approximate the set of locations which

satisfy the condition in Section 3.

Our analysis is based on the following observations which is

derived by considering the effect of all kinds of conversions

between pointers and integers:

1. A pointer-to-pointer conversion on a location l may cause

the change of layout of the block which belongs to;

2. The change of layout of a block may cause all kinds of

conversions on contents of locations which belong to ;

3. An integer-to-pointer conversion on a location may

cause a pointer-to-pointer conversion on ;

4. An pointer-to-integer conversion on a location adds all

locations which belong to the same block as to the

location set from which the result of integer-to-pointer

ptr-to-ptr conv.

ptr-to-int conv. int-to-ptr conv.

the change of layout of a block

1

2

3

4

2

2

─66─

成 蹊 大 学 理 工 学 研 究 報 告 Vol.50 No.2(2013.12)

conversions is determined.

We summarize these observations in Figure 1.

Let us consider the following code:

1: struct S { struct S *p1, *p2; int j; }

 s1, s2, s3;

2: struct T { int i; struct T *q; } *tp;

3: s1.p1 = &s2;

4: s1.p2 = &s3;

5: tp = (struct T*)&s1;

6: int n = tp->i + 4;

7: struct T *tp2 = (struct T*)n;

A pointer-to-pointer conversion on s1 at Line 5 causes the

change of layout of s1 (Observation 1). This causes a pointer-

to-integer conversion on the content of s1.p1 and a pointer-

to-pointer conversion on the content of s1.p2 (Observation 2).

The former adds all locations of s2 to the set from which the

result of integer-to-pointer conversions is determined

(Observation 3). The latter causes the change of layout of s3,

which causes further conversions through the diagram in

Figure 1. The integer-to-pointer conversion at Line 7 creates

the location of s2.p2 from an integer n, which is justified by

the above pointer-to-integer conversion on s2 (Observation 4).

Now we explain the strategy of our analysis based on these

observations. At each execution state s, we call the set of

locations which belong to a block whose layout may be

changed as , and the set of locations which may be

allowed to be the result of integer-to-pointer conversion as

. They may change during execution and thus are

parameterized by a state. We usually omit a state parameter and

just write and .

 Our basic idea is simply to keep field-sensitivity for blocks

which do not belong to . If a block does not belong to

, we can precisely model the layout of the block by its

declared type. We also approximate all integer values by .

 As , and points-to information are mutually

dependent (See Figure 1), our analysis does all calculations

simultaneously. The calculations of and can be

reduced to the reachability problem, as we will show in the next

section.

 To construct the analysis of and , we

characterize these sets by a kind of reachability predicates. The

seeds of the reachability are the sets of locations on which

certain type conversions are performed directly. Let ()

be the set of locations on which pointer-to-pointer (pointer-to-

integer) conversions are performed directly,

 From the observations in Section 3.1, we can see:
If belongs to , then and all locations of the
same block of l belong to (Observation 1);
If belongs to , and the content of is ,
then belongs to VLoc and (Observation 2);
If belongs to , then belongs to
(Observation 3);
If belongs to , then and all locations of the
same block of belong to (Observation 4)

We use three predicates to formalize and . The

predicates , and are low-level

variants of reachability predicates used in shape analysis17).

Note that means is reachable from

through memory indirection.

 By using these predicates, we can formally define

and as below:

Roughly, is the set of locations -able from

locations converted to another pointer type, and is the

set of locations converted to integer, or -able from

locations of blocks whose layout may be changed. We also

include in as it is the predetermined set of

locations allowed to be created from system-specific integer

values.

 and are upper-approximations of the

semantics in the following sense:

1. Every location which is accessed as a type different from

that of allocation time is included in ;

2. Every location which satisfies the language restriction of

Definition 1 is included in .

The correctness of these properties is obvious from the

definition of and .

─67─

成 蹊 大 学 理 工 学 研 究 報 告 Vol.50 No.2(2013.12)

As the set of concrete locations is infinite, we need to have

abstract representation (called abstract location) for them. The

choice determines the solution space, and thus has a great

impact on the precision and efficiency of the analysis. This is

where the field-sensitivity emerges.

 Basically, we use the conventional base/offset

representation20). For a location , we denote its abstraction as

. The base part of abstracts the block of , and the offset

part of abstracts the byte offset of from the top of the

block. This provides a uniform representation under arbitrary

type conversions and internal pointers.

 However, we do not want to allow arbitrary offsets inside a

block in an abstract location like previous works19), because it

makes the analysis complicated and slower, and causes positive

weight cycle problem16). Instead, we exploit the declared type

(in RML, the declared type means the type at allocation) and

only use offsets of fields in the declared type of the block. This

seems dangerous as there may be accesses to a location whose

offset does not correspond to any field in the declared type by

the use of casting. However, we can handle it safely by keeping

field-sensitivity only for blocks which are definitely not in

.

Abstract Offsets For a block of type , we define the set of

abstract offsets as below:

where is a typename environment for a program,
and holds iff is integer, pointer, or
union type.
 The predicate is inductively defined by the rules in

Figure 2. It determines the type of each offset from outer to

inner. This matches the computation order of offset calculation

for successive field references, and makes the proof easier.

 is similar to offsetof macro in C, except for taking

a type name environment as an extra argument to resolve type

names.

 Note that there is no rule to go inside union. We regard union

as atomic and treat field-insensitively. Also, note that offsets of

all elements of an array are represented as the offset of the first

element of the array. We do not treat an array as atomic, and if

the type of elements is a structure, we distinguish each field

inside the structure. This makes the analysis more precise, but

as we will show in Section 4, if this is applied unrestrictedly, it

may make the analysis unsound. We avoid this problem by

treating locations in field-insensitively as shown later.

Abstract Blocks Basically, we abstract blocks created

during the execution by its allocated location . For

the block for , the set of a system-specific constant

locations, we abstract the block as 0, which is excluded from

Abstract Locations For a program = ,

the set of abstract locations can be defined as follows:

We use to abstract all locations in . is the

fixed set of abstract locations used for the analysis. For

simplicity, we usually abbreviate as .

 For the lack of space, we do not show the formal definition

of the abstraction function between concrete and abstract

(A) (C)

(I) (L)

(S) (F)

─68─

成 蹊 大 学 理 工 学 研 究 報 告 Vol.50 No.2(2013.12)

locations. For l not contained , it can be defined naturally

based on the above descriptions for abstract locations and

blocks. For , we abstract it field-insensitively to

 where is the abstract block of l. We lift the abstraction

function to the set; for a set of locations , .

Now we give the algorithm for our pointer analysis. It is

Andersen-style1), that is, flow-insensitive (ignores all control

flows) and subset-based (allows a pointer to have multiple

targets).

 The solution of the analysis is the abstract state which

summarizes all possible states in executions of the program.

consists of , , , , , and . We represent the

component of by . The meaning of each components

is self-explanatory.

 For a program = , we formalize our

analysis as a deductive system DS, which is a set of rules to

deduce constraints of each components of (Figures 3 and 4).

The solution is the least closed under DS. As DS is

monotone and we fix the set of abstract location for the target

program, the termination is obvious.

 Figure 3 shows the rules for analyzing programs which do

not use casts, union types, and constant locations. It is

straightforward and needs no explanation

 Figure 4 shows the rules for handling all
complications described earlier. Here we use the
predicates , and , which
abstract , , and in an
intuitive way.
 Rules PP, IP, and PI detects three kinds of type conversions

caused by . Rules V1, V2, V3, U1, U2, U3, U4 are

straightforward abstractions of and . Rule V2

treats all locations of union type as statically converted to

another pointer type. Rule U2 includes (0,0), that is, the

abstract location for into . Rule M reflects that all

locations in may have arbitrary integer value by the

change of layout of the block. Rule R compensate the

imprecision of offset calculations on locations in by

adjusting to 0 , which is the representative offset of all locations

in .

We use the following predicates to prove the soundness of

analysis.

.

.

.

Each invariant represents that the component of

is an upper-approximation of the corresponding component

of all possible states with respect to the abstraction function.

We denote the conjunction of all invariants as . Thanks

to our formal model of memory, we can prove the soundness in

a standard way.

(PP) (IP)

(PI) (V1)

(V2) (V3)

(U1) (U2)

(U3) (U4)

(M) (R)

─69─

成 蹊 大 学 理 工 学 研 究 報 告 Vol.50 No.2(2013.12)

Lemma 1 (Initialization). Let be the solution of the analysis

for a program . For every initial state ,

 hold.

Lemma 2 (Preservation). Let be the solution of the analysis

for a program P. For any states , if

holds and , then holds.

Proof. We can prove that , , , and

,are derived from other invariants. For , ,

, and , we can prove by case analysis of

instructions.

Theorem 3 (Soundness). Let be the solution of the analysis

for a program . For every state ,

holds.

Proof. By induction on the length of the execution of with

Lemma 1 and Lemma 2.

Many field-sensitive analysis cannot handle casting nor

union1,5,7,16), and give unsound solution for non strictly-

conforming programs. For example, Cheng et al. model the

layout of object by base and access paths5). Roughly, an access

path is a list of field references represented as a pair (offset,

size). They ignore array subscriptions completely. This

implicitly means that all elements of an array are abstracted to

the first element of the array. This gives unsound result in the

presence of casting or union. For example, consider the

following union.

union U {

 struct S { int *f1,*f2,*f3,*f4; } s;

 struct T { int *g1,*g2; } a[2];

}

While u.s.f3 and u.a[1].g1 refers to the same location,

their access paths are (8,4) and (0,4), which do not overlap.

 The seminal work by Yong et al.20) is most closely related to

our goal. They give four algorithms for modeling the layout of

object under the presence of pointer casting. Our work has three

advancements from their work. First, all of their algorithms

treat an array as atomic. This means that they cannot

distinguish fields inside an array of structure; for example,

a[0].f1 and a[0].f2 are considered the same while our

algorithm can distinguish them as long as they are not in .

This also makes the layout of object complicated. As they

commented in footnote, their function in offset-

approach cannot handle an array of structure safely. Second,

their formalization does not include union types. As our

analysis shows, union type needs a special treatment in many

cases and to incorporate it into the formal model is not trivial.

Third, their algorithms cannot handle integer/pointer

conversion soundly. As their algorithms and ours are both flow-

insensitive, subset-based, and context-insensitive, this

performance loss may well be caused by the way of handling

the layout of object. The algorithm given in Steendsgaard is

similar to Yong's common initial sequence approach, but less

precise18).

 Wilson et al. use the triple of (base, offset, stride) to model

the layout of object19). Roughly, a triple (b,o,s) represents the

set of locations . They completely

ignore the declared type of object. This means that they cannot

use the constraints of the language specification such as

referring to a location out of array is undefined behaviour. If

there is a field of an array in a structure, it imprecisely assumes

that the array is expanded to the whole structure. Calculation of

a triple is complex and their algorithm is slow. Also, Their

algorithm cannot handle integer/pointer conversion soundly.

 Chandra et al. investigates the usage pattern of casting3).

They proposes the concept of physical subtyping, which is a

subtyping relation with respect to the layout of object. We can

improve the precision of our work by incorporating physical

subtyping to ignore ``upcast'' which does not affect the layout

of object.

 Lattner proposes a data structure analysis which checks the

data structures of lhs and rhs in each assignments and if they

are incompatible, collapses them and gives up field-

sensitivity11). This is similar to collapse-on-cast approach in

Yong, but less precise as their analysis is unification-based, that

is, multiple targets of a pointer should be merged. Such

collapsing merges pointer fields and integer fields into the one

and is unsound in the presence of integer/pointer conversion.

 Necula et al. propose CCured, which is a program

transformation system that adds memory safety guarantees to

C programs15). Though CCured is not pointer analysis, their

work has some similarity with ours in doing some classification

about memory usage. They classify pointers, while we classify

locations. Their approach is less precise than ours. If a pointer

 points to a non-well-typed location, all other locations

pointed by are imprecisely considered to be a non-well-

─70─

成 蹊 大 学 理 工 学 研 究 報 告 Vol.50 No.2(2013.12)

typed.

 There are several works that develop the reachability

predicates on low-level memory model such as an array of

byte2,4,8). These predicates are designed for specifying the

properties of linked data structures, and more expressive than

ours. On the other hand, they cannot handle the integer/pointer

conversion. Our analysis is less precise, but efficient and fully

automatic.

 We implemented our analysis based on the set-based

constraint system. It can also be implemented efficiently by

BDD-based bottom-up solver by preparing all kinds of offset

calculations by predicates13), that is possible as our abstract

locations are finite and fixed.

We gave a field-sensitive pointer analysis for C with

integer/pointer conversion. Based on our formal model of

memory, we could reduce all the intricacies of arbitrary type

conversions to the simple reachability problem. Our analysis

was derived as a natural abstraction of the semantics, and easily

shown to be sound. As our analysis can handle all low-level

features of C, and has no assumption on the implementation-

dependent features, it is directly applicable to many compilers.

Also, analyses just for type-safe subset of C can be combined

with our analysis and extended to handle full C. We hope that

our work releases compiler developers from the struggle with

subtle bugs caused by the combination of field-sensitivity and

arbitrary type conversions.

1) Andersen, L. O.: Program Analysis and Specialization for

the C Programming Languages, Ph.D. thesis, DIKU,

University of Copenhagen, 1994.

2) Calcagno, C., Distefano, D., O'Hearn, P. W. and Yang, H.:

Beyond Reachability: Shape Abstraction In the Presence

of Pointer Arithmetics, SAS, 2006.

3) Chandra, S. and Reps, T. W.: Physical Type Checking for

C, PASTE, 1999.

4) Chatterjee, S., Lahiri, S. K., Qadeer, S. and Rakamaric, Z.:

A Reachability Predicate for Analyzing Low-Level

Software, TACAS, 2007.

5) Cheng, B.-C. and Hwu, W.-M. W.: Modular

Interprocedural Pointer Analysis Using Access Paths:

Design, Implementation, and Evaluation, PLDI, 2000.

6) Das, M.: Static Analysis of Large Programs: Some

Experiences, PEPM, 2000.

7) Emami, M., Ghiya, R. and Hendren, L.: Context-Sensitive

Interprocedural Points-to Analysis in the Presence of

Function Pointers, PLDI, 1994.

8) Gulwani, S. and Tiwari, A.: An Abstract Domain for

Analyzing Heap-Manipulating Low-Level Software, CAV,

2007.

9) Heintze, N. and Tardieu, O.: Ultra-fast Aliasing Analysis

Using CLA: a Million Lines of C Code in a Second, PLDI,

2001.

10) Hind, M.: Pointer Analysis: Haven't We Solved This

Problem Yet?, PASTE, 2001.

11) Lattner, C.: Macroscopic Data Structure Analysis and

Optimization, Ph.D. thesis, Computer Science

Department, University of Illinois at Urbana-Campaign,

2005.

12) Lattner, C. and Adve, V.: LLVM: A Compilation

Framework for Lifelong Program Analysis and

Transformation, CGO, 2004.

13) Lhotak, O. and Hendren, L.: Jedd: a BDD-based

Relational Extension of Java, PLDI, 2004.

14) Mine, A.: Field-Sensitive Value Analysis of Embedded C

Programs with Union Types and Pointer Arithmetics,

LCTES, 2006.

15) Necula, G. C., McPeak, S. and Weimer, W.: CCured:

Type-Safe Retrofitting of Legacy Code, POPL, 2002.

16) Pearce, D. J., Kelly, P. H. J. and Hankin, C.: Efficient

Field-Sensitive Pointer Analysis for C, PASTE, 2004.

17) Sagiv, M., Reps, T. and Wilhelm, R.: Parametric Shape

Analysis via 3-valued Logic, TOPLAS, 2002.

18) Steensgaard, B.: Points-to Analysis by Type Inference of

Programs with Structures and Unions, Computational

Complexity, 1996.

19) Wilson, R. P. and Lam, M. S.: Efficient Context-Sensitive

Pointer Analysis for C Programs, PLDI, 1995.

20) Yong, S. H., Horwitz, S. and Reps, T. W.: Pointer Analysis

for Programs with Structures and Casting, PLDI, 1999

─71─

成 蹊 大 学 理 工 学 研 究 報 告 Vol.50 No.2(2013.12)

