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ABSTRACT We present a field-sensitive pointer analysis algorithm for C in the presence of type 
conversion between integer and pointer. While field-sensitive analysis can give precise solution, it is 
notoriously difficult to design a correct analysis which handles all low-level dirty features of C. Most 
difficulties stem from arbitrary integer/pointer conversions allowed as an implementation-defined feature. 
To incorporate this feature into pointer analysis is not so easy as expected, and previous approaches are 
either unsound or greatly imprecise. In this paper, we first define the formal semantics which incorporates 
all low-level features of C and show that it is hardly to have precise analysis if arbitrary integer/pointer 
conversions are allowed. To address this, we identify the language restriction which many compiler 
developers implicitly assume and derive a precise analysis algorithm as an approximation of the semantics. 
Our analysis is shown to be sound under the restriction. 
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Pointer analysis is a generic term for program analysis 

concerning various properties of pointers. Among a variety of 

pointer analysis, here we deal with the class of may points-to 

analysis problem, i.e., given a program, calculating all memory 

regions to which each pointer may point. This kind of 

information is known to be useful for compiler optimization, 

program verification, program understanding and so on. 

  Many algorithms have been proposed over the last two 

decades10). They can be classified by several aspects such as 

flow-sensitivity, field-sensitivity, context-sensitivity, object-

sensitivity. 

  In this paper, we concentrate on the issues of field-sensitivity. 

Informally, analysis is called field-sensitive if it can distinguish 

each field of structure instead of treating a whole structure 

atomically. Field-sensitive analysis can give more precise 

solution than the field-insensitive one, and can provide more 

opportunities for compiler optimizations. 

  For type-safe languages such as Java or a type-safe subset of 

C, field-sensitive analysis is as easy as the field-insensitive one. 

However, in full C, field-sensitivity brings many complicating-

factors, and makes it quite difficult to design a correct analysis6). 

  The main challenge is to model correctly the layout of object, 

or memory block. In C, we can make an object of complex 

structure which is a combination of structures, unions, and 

arrays, and make an internal pointer to a field in the middle of 

a structure object. Moreover, we can access an object through 

more than one types by using a cast operator or union type. 

Thus, we cannot simply model an object as a mapping from 

field identifiers to values as in type-safe languages. 

  Since the layout of object is implementation-defined, 

programs which depend on it are not strictly-conforming. Thus 

algorithms which only treat ANSI C programs can ignore some 

of these intricate issues. However, when we develop a pointer 

analysis for a compiler, we should handle all implementation-

defined behaviors correctly with respect to its specification. 

  Another Challenge, which has been overlooked in many 

works is that most compilers allow the conversion between 

integer and pointer if they are the same size. Here we use an 

integer type as a representative of all non-pointer types 

convertible to/from pointer types. The case for e.g., floating 

type is similar. 

  For example, the following code is legal if the size of int 

and pointer are both four bytes: 
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struct S { int m, n; } s; int i, *p; 

i = (int)&s; 

p = (int *)(i + 4); 

 

We can use p to access s.n. This code may seem artificial, but 

this kind of conversion is widely used, e.g., in va_arg macro 

of the standard library. 

  Integer/pointer conversion is also used in embedded 

programs which interact with auxiliary devices through 

memory-mapped I/O ports. To access the memory region for 

the I/O ports, it must create a pointer to the I/O port from the 

system-specific integer value which represents the address of 

the I/O ports. 

  A naive but popular approach to this problem is to 

approximate an integer value as the set of arbitrary addresses. 

We call it unknown pointer approach1). This approach is 

obviously sound as it assumes that an integer value may point 

to any locations. Moreover, if no such conversion exists in the 

target program, there is no loss of precision and performance 

of analysis. However, if such conversion exists, and if there is 

an assignment *p = e where p has been assigned some 

integer value and e is an expression of integer type, the impact 

on the precision is disastrous. As both sides of the assignment 

can represent arbitrary locations (we use the term location and 

address interchangeably), every pointer is considered to point 

to any location by the assignment! Embedded programs using 

memory-mapped I/O ports match this case. This is serious in 

particular for an interprocedural analysis, since it makes such 

analysis completely useless. 

  Another approach is to track integer values as well as pointer 

values14). When a pointer value is created from an integer value, 

we can recover the original pointer value from this information. 

However, it is costly and difficult to perform precise integer-

tracking. For example, an integer value can be copied indirectly 

through control flow. This is serious in particular for field-

sensitive analysis, since we need to calculate the corresponding 

field from an integer value which may be the result of arbitrary 

arithmetic operations. 

  As we will show in Section 3, the integer/pointer conversion 

problem interacts with the object layout problem in a 

complicating way, and to design correct field-sensitive analysis, 

we need to consider all possible interactions exhaustively. It is 

very difficult to do in an ad-hoc way. 

 

Contributions In this paper, we present an analysis which is 

field-sensitive and can handle programs with integer/pointer 

conversions safely and precisely . 

  To this end, we identify the language restriction which is 

necessary to do such analysis. The restriction is very weak. It 

only excludes programs which exploit the accidental 

coincidence between an integer value and the address of 

variables. 

  We give a formal model of memory which incorporates the 

restriction. The model can represent the meaning of non-well-

typed memory accesses without going down to low-level, 

implementation-dependent details (e.g., byte representation of 

values). The meaning is the upper-bound of all specific 

compiler implementations, and thus our analysis based on it 

can be applicable to any compilers which accept the restriction 

above. This also incorporates the memory region denoted by 

system-specific integer values, which is ignored in previous 

works. 

  The model enables us to reduce the integer/pointer 

conversion problem by a simple reachability problem. The 

soundness of the analysis can be proved in a straightforward 

way. As far as we know, this is the first work to prove the 

soundness of pointer analysis for C in the presence of arbitrary 

type conversions. 

  Our analysis keeps field-sensitivity inside an array, while it 

does not distinguish each element of an array. This level of 

precision is desirable for many compiler optimizations. We do 

not know any works which achieve this in the presence of 

arbitrary type conversions. 

First, we introduce a target language called RML (Register-

Memory Language), which captures all low-level features of C 

and also is amenable to formal treatment. 

  Basically, RML is similar to low-level intermediate 

representations used in compilers. In particular, RML 

instructions are very similar to the one used in LLVM12), except 

that field and index are combined into a single complex 

instruction in LLVM. 

 

An RML Program is a tuple .  and 

 are type environments for type names and registers, All 

operations in a program are performed through (virtual) 
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registers . Registers are strongly typed, and their types are 

given by .  assigns an instruction to each code location 

in . Representative instructions of RML are shown in 

Table 1.  represents control flow between instructions. 

 is the code location of program entry. 

  Informally, an execution of a program  starts at , 

and follows the control flow defined in . At each step, an 

instruction is fetched from  and interpreted.  

  The meanings of most instructions are intuitive. There is no 

variable declaration. All variables are created by  

where  holds the address of a created memory block (object). 

The address operator & in C is replaced with a use of the register. 

All address calculations in C (field references, array 

subscripting, and pointer arithmetic) are realized by field and 

index. Each field of structure or union is identified by a field 

index n: the first field is 0, the second is 1, and so on. Elements 

of array are designated by . is a pointer to an 

element of an array, and  is an index relative to . There 

are only two instructions which interact with memory. 

reads the content of the address  into , and 

 writes the value of  into the address . 

  To concentrate on the subject of this work, we omit several 

language constructs such as the free operation, function calls, 

conditional branches and numeric operations. To support these 

constructs causes no theoretical difficulty. 

  Types of RML are inductively defined by the following 

syntax: 

 

 

 

where , , and . 

  Types of RML are quite similar to C. An integer type  

is parameterized with the byte size . As each field is 

identified by a field index, fields of structure and union are 

represented just by a list of type of each field.  is 

introduced to represent recursive types. We assume that all type 

names used in a program  are defined in the type name 

environment  of . 

 

An execution state s of a program is a tuple of 

. For state , we represent the 

component  of  by .  is the current code location. 

 and  are the contents of registers and memory. We will 

explain  in Section 2.3.  is the set of allocated locations. 

 associates a location with the code location which allocates 

it. For each location  of a block ,  assigns the top 

location of  to . For a program , we write the set of initial 

states as , all states in the execution of P as 

, and a transition from  to  as . 

  We assume there are two disjoint sets of data locations, 

 and . is used for allocation by .  

corresponds to the memory region which is designated by a 

system-specific constant address. We assume  is 

contiguous. 

 

The dynamic semantics of RML is defined as a state transition 

system. For the lack of space, we omit the full detail of the 

semantics and concentrate on a formal model of memory, 

which plays the central role in the design of pointer analysis.  

  It is simple for type-safe programs. Every value loaded from 

a location  has the preceding store to  of the same type. We 

can formalize this by simple axioms. 

  However, in the presence of casts or unions, a value of type 

 loaded from a location  may not have the preceding store 

of type  to . A program may load a pointer value which was 

stored as an integer value (thus an implicit casting occurs at the 

load). Or worse, a program may load a pointer value which is 

composed of parts of two integer values at successive locations. 

  A common approach in the area of verification is to model a 

memory as a global array of byte (known as a RAM model2)). 

A store of a value is modeled by a decomposition of the value 

into a sequence of bytes and updates of the global array. A load 

of a value is modeled by a load of the global array and a 

composition of these bytes. 

  The problem of such byte-level model is that we need to 

formalize the details of all conversions and arithmetic 

operations to specify a location which is created from an integer. 

This is very tedious. It also makes the model heavily depend on 

a specific implementation policy. 

Instruction informal meaning 
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  To address these problems, we propose the following 

approach: 

model a memory as a function  from locations and types to 

values, and a type map  which maintains the type of the 

value stored at each location; 

if a load from a location  is well-typed, that is, the type of the 

load matches the type of  in , the loaded value is the value 

stored at ; 

if a load from a location  is not well-typed, the loaded value 

should is one of values satisfying a certain condition (which 

will be given later). 

At each store of type  to , we update the type map  by 

first removing all entries which overlap with stored locations 

 and adding the new entry  to . 

  Implementation-dependent feature is parameterized in the 

condition used at step 3. For type-safe C, it is false; this means 

such non-well-typed load causes undefined behavior. For byte-

level C, it is the value which is composed of a sequence of bytes 

in  in a specific way. 

  The decision of the condition has great impact on the 

applicability and precision of the analysis based on it. Roughly, 

the weaker the condition, the analysis based on it is more 

applicable to many compilers. False is the strongest, and the 

analysis based on this condition is unsound for almost all C 

compilers which allow non-well-typed load under certain 

conditions.  

  On the other hand, the stronger the condition, the analysis 

based on it can be more precise since the stronger condition 

decreases the possible values of a non-well-typed load. The 

condition used in byte-level C is strong in the sense that it 

determines the value of a non-well-typed load uniquely. Thus 

if we can analyze the value flow of all bytes, we can make the 

very precise analysis with respect to non-well-typed load. 

  However, as we said in the introduction, it is very difficult to 

track integer (non-pointer) values precisely. If we give up such 

integer-tracking, we need to consider arbitrary locations as the 

result of non-well-typed load. We have shown that this makes 

the analysis greatly imprecise. 

  In this paper, we propose the following condition: A pointer 

value that can be the result of non-well-typed load should be 

one of the locations which have been accessed as integer, that 

is, satisfy the language restriction defined below. 

 

Definition 1 (Language Restriction). If a location  is created 

from an integer,  should satisfy one of the conditions below 

prior to the creation: 

A location  was converted to integer type by a cast operator. 

All locations belonging to the same block of  are also 

regarded as converted. 

A location  was stored at some location , and then the 

content of  was loaded as integer type by any means. 

A location  is in the set of system-specific locations which is 

disjoint from any blocks allocated by a program. 

 

This condition just excludes the case that a pointer to a variable 

 is created from an integer value which is accidentally the 

same as the location of . On the other hand, this does not 

exclude any way of propagation of integer values. Thus we 

believe that this condition is acceptable for most compilers. 

  We present how to approximate the set of locations which 

satisfy the condition in Section 3. 

Our analysis is based on the following observations which is 

derived by considering the effect of all kinds of conversions 

between pointers and integers: 

1. A pointer-to-pointer conversion on a location l may cause 

the change of layout of the block which  belongs to; 

2. The change of layout of a block  may cause all kinds of 

conversions on contents of locations which belong to ; 

3. An integer-to-pointer conversion on a location  may 

cause a pointer-to-pointer conversion on ; 

4. An pointer-to-integer conversion on a location  adds all 

locations which belong to the same block as  to the 

location set from which the result of integer-to-pointer 

ptr-to-ptr conv.

ptr-to-int conv. int-to-ptr conv.

the change of layout of a block

1

2

3

4

2

2
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conversions is determined. 

We summarize these observations in Figure 1. 

 

Let us consider the following code: 

 
1: struct S { struct S *p1, *p2; int j; } 

   s1, s2, s3; 

2: struct T { int i; struct T *q; } *tp; 

3: s1.p1 = &s2; 

4: s1.p2 = &s3; 

5: tp = (struct T*)&s1; 

6: int n = tp->i + 4; 

7: struct T *tp2 = (struct T*)n; 

 

A pointer-to-pointer conversion on s1 at Line 5 causes the 

change of layout of s1 (Observation 1). This causes a pointer-

to-integer conversion on the content of s1.p1 and a pointer-

to-pointer conversion on the content of s1.p2 (Observation 2). 

The former adds all locations of s2 to the set from which the 

result of integer-to-pointer conversions is determined 

(Observation 3). The latter causes the change of layout of s3, 

which causes further conversions through the diagram in 

Figure 1. The integer-to-pointer conversion at Line 7 creates 

the location of s2.p2 from an integer n, which is justified by 

the above pointer-to-integer conversion on s2 (Observation 4). 

 

Now we explain the strategy of our analysis based on these 

observations. At each execution state s, we call the set of 

locations which belong to a block whose layout may be 

changed as , and the set of locations which may be 

allowed to be the result of integer-to-pointer conversion as 

. They may change during execution and thus are 

parameterized by a state. We usually omit a state parameter and 

just write  and . 

  Our basic idea is simply to keep field-sensitivity for blocks 

which do not belong to . If a block does not belong to 

, we can precisely model the layout of the block by its 

declared type. We also approximate all integer values by . 

  As ,  and points-to information are mutually 

dependent (See Figure 1), our analysis does all calculations 

simultaneously. The calculations of  and  can be 

reduced to the reachability problem, as we will show in the next 

section. 

 

    

  To construct the analysis of  and , we 

characterize these sets by a kind of reachability predicates. The 

seeds of the reachability are the sets of locations on which 

certain type conversions are performed directly. Let  ( ) 

be the set of locations on which pointer-to-pointer (pointer-to-

integer) conversions are performed directly, 

  From the observations in Section 3.1, we can see: 
If  belongs to , then  and all locations of the 
same block of l belong to  (Observation 1); 
If  belongs to , and the content of  is , 
then  belongs to VLoc and  (Observation 2); 
If  belongs to , then  belongs to  
(Observation 3); 
If  belongs to , then  and all locations of the 
same block of  belong to  (Observation 4) 

 
We use three predicates to formalize  and . The 

predicates ,  and  are low-level 

variants of reachability predicates used in shape analysis17). 

Note that  means  is reachable from  

through memory indirection. 

  By using these predicates, we can formally define  

and  as below: 

 

 

 

 

Roughly,  is the set of locations -able from 

locations converted to another pointer type, and  is the 

set of locations converted to integer, or -able from 

locations of blocks whose layout may be changed. We also 

include  in  as it is the predetermined set of 

locations allowed to be created from system-specific integer 

values. 

   and  are upper-approximations of the 

semantics in the following sense: 

1. Every location which is accessed as a type different from 

that of allocation time is included in ; 

2. Every location which satisfies the language restriction of 

Definition 1 is included in . 

The correctness of these properties is obvious from the 

definition of  and . 
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As the set of concrete locations is infinite, we need to have 

abstract representation (called abstract location) for them. The 

choice determines the solution space, and thus has a great 

impact on the precision and efficiency of the analysis. This is 

where the field-sensitivity emerges. 

  Basically, we use the conventional base/offset 

representation20). For a location , we denote its abstraction as 

. The base part of  abstracts the block of , and the offset 

part of  abstracts the byte offset of  from the top of the 

block. This provides a uniform representation under arbitrary 

type conversions and internal pointers. 

  However, we do not want to allow arbitrary offsets inside a 

block in an abstract location like previous works19), because it 

makes the analysis complicated and slower, and causes positive 

weight cycle problem16). Instead, we exploit the declared type 

(in RML, the declared type means the type at allocation) and 

only use offsets of fields in the declared type of the block. This 

seems dangerous as there may be accesses to a location whose 

offset does not correspond to any field in the declared type by 

the use of casting. However, we can handle it safely by keeping 

field-sensitivity only for blocks which are definitely not in 

. 

 

Abstract Offsets  For a block of type , we define the set of 

abstract offsets as below: 

 
 

 
 
where  is a typename environment for a program, 
and  holds iff  is integer, pointer, or 
union type. 
  The predicate  is inductively defined by the rules in 

Figure 2. It determines the type of each offset from outer to 

inner. This matches the computation order of offset calculation 

for successive field references, and makes the proof easier. 

 is similar to offsetof macro in C, except for taking 

a type name environment as an extra argument to resolve type 

names. 

  Note that there is no rule to go inside union. We regard union 

as atomic and treat field-insensitively. Also, note that offsets of 

all elements of an array are represented as the offset of the first 

element of the array. We do not treat an array as atomic, and if 

the type of elements is a structure, we distinguish each field 

inside the structure. This makes the analysis more precise, but 

as we will show in Section 4, if this is applied unrestrictedly, it 

may make the analysis unsound. We avoid this problem by 

treating locations in  field-insensitively as shown later. 

 

Abstract Blocks  Basically, we abstract blocks created 

during the execution by its allocated location . For 

the block for , the set of a system-specific constant 

locations, we abstract the block as 0, which is excluded from

 

 

Abstract Locations  For a program  = , 

the set of abstract locations  can be defined as follows: 

 

 

 

We use  to abstract all locations in .  is the 

fixed set of abstract locations used for the analysis. For 

simplicity, we usually abbreviate  as . 

  For the lack of space, we do not show the formal definition 

of the abstraction function between concrete and abstract 

       

 

    

(A)               (C)  

 

(I)      (L)  

 

(S)          (F)  
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locations. For l not contained , it can be defined naturally 

based on the above descriptions for abstract locations and 

blocks. For , we abstract it field-insensitively to 

 where  is the abstract block of l. We lift the abstraction 

function to the set; for a set of locations , . 

 

Now we give the algorithm for our pointer analysis. It is 

Andersen-style1), that is, flow-insensitive (ignores all control 

flows) and subset-based (allows a pointer to have multiple 

targets). 

  The solution of the analysis is the abstract state  which 

summarizes all possible states in executions of the program.  

consists of , , , , , and . We represent the 

component  of  by . The meaning of each components 

is self-explanatory. 

  For a program  = , we formalize our 

analysis as a deductive system DS, which is a set of rules to 

deduce constraints of each components of  (Figures 3 and 4). 

The solution is the least  closed under DS. As DS is 

monotone and we fix the set of abstract location for the target 

program, the termination is obvious. 

  Figure 3 shows the rules for analyzing programs which do 

not use casts, union types, and constant locations. It is 

straightforward and needs no explanation 

  Figure 4 shows the rules for handling all 
complications described earlier. Here we use the 
predicates ,  and , which 
abstract , , and  in an 
intuitive way. 
  Rules PP, IP, and PI detects three kinds of type conversions 

caused by . Rules V1, V2, V3, U1, U2, U3, U4 are 

straightforward abstractions of  and . Rule V2 

treats all locations of union type as statically converted to 

another pointer type. Rule U2 includes (0,0), that is, the 

abstract location for  into . Rule M reflects that all 

locations in  may have arbitrary integer value by the 

change of layout of the block. Rule R compensate the 

imprecision of offset calculations on locations in  by 

adjusting to 0 , which is the representative offset of all locations 

in . 

 

We use the following predicates to prove the soundness of 

analysis.  

 
. 

. 
 

 

. 

 
 
 

 
Each invariant  represents that the component  of  

is an upper-approximation of the corresponding component  

of all possible states with respect to the abstraction function. 

We denote the conjunction of all invariants as . Thanks 

to our formal model of memory, we can prove the soundness in 

a standard way. 

 

(PP)  (IP)   

   

(PI)    (V1)  

 

(V2)   (V3)  

 

(U1)       (U2)  

 

(U3)     (U4)  

 

(M)               (R)  
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Lemma 1 (Initialization). Let  be the solution of the analysis 

for a program . For every initial state , 

  hold. 

Lemma 2 (Preservation). Let  be the solution of the analysis 

for a program P. For any states , if 

holds and , then  holds. 

Proof.  We can prove that , , , and 

,are derived from other invariants. For , , 

, and , we can prove by case analysis of 

instructions.  

 

Theorem 3 (Soundness). Let  be the solution of the analysis 

for a program . For every state ,  

holds. 

Proof.  By induction on the length of the execution of  with 

Lemma 1 and Lemma 2.  

Many field-sensitive analysis cannot handle casting nor 

union1,5,7,16), and give unsound solution for non strictly-

conforming programs. For example, Cheng et al. model the 

layout of object by base and access paths5). Roughly, an access 

path is a list of field references  represented as a pair (offset, 

size). They ignore array subscriptions completely. This 

implicitly means that all elements of an array are abstracted to 

the first element of the array. This gives unsound result in the 

presence of casting or union. For example, consider the 

following union. 

 
union U {  

  struct S { int *f1,*f2,*f3,*f4; } s; 

  struct T { int *g1,*g2; } a[2];  

} 

 
While u.s.f3 and u.a[1].g1 refers to the same location, 

their access paths are (8,4) and (0,4), which do not overlap. 

  The seminal work by Yong et al.20) is most closely related to 

our goal. They give four algorithms for modeling the layout of 

object under the presence of pointer casting. Our work has three 

advancements from their work. First, all of their algorithms 

treat an array as atomic. This means that they cannot 

distinguish fields inside an array of structure; for example, 

a[0].f1 and a[0].f2 are considered the same while our 

algorithm can distinguish them as long as they are not in . 

This also makes the layout of object complicated. As they 

commented in footnote, their  function in offset-

approach cannot handle an array of structure safely. Second, 

their formalization does not include union types. As our 

analysis shows, union type needs a special treatment in many 

cases and to incorporate it into the formal model is not trivial. 

Third, their algorithms cannot handle integer/pointer 

conversion soundly. As their algorithms and ours are both flow-

insensitive, subset-based, and context-insensitive, this 

performance loss may well be caused by the way of handling 

the layout of object. The algorithm given in Steendsgaard is 

similar to Yong's common initial sequence approach, but less 

precise18). 

  Wilson et al. use the triple of (base, offset, stride) to model 

the layout of object19). Roughly, a triple (b,o,s) represents the 

set of locations . They completely 

ignore the declared type of object. This means that they cannot 

use the constraints of the language specification such as 

referring to a location out of array is undefined behaviour. If 

there is a field of an array in a structure, it imprecisely assumes 

that the array is expanded to the whole structure. Calculation of 

a triple is complex and their algorithm is slow. Also, Their 

algorithm cannot handle integer/pointer conversion soundly. 

  Chandra et al. investigates the usage pattern of casting3). 

They proposes the concept of physical subtyping, which is a 

subtyping relation with respect to the layout of object. We can 

improve the precision of our work by incorporating physical 

subtyping to ignore ``upcast'' which does not affect the layout 

of object. 

  Lattner proposes a data structure analysis which checks the 

data structures of lhs and rhs in each assignments and if they 

are incompatible, collapses them and gives up field-

sensitivity11). This is similar to collapse-on-cast approach in 

Yong, but less precise as their analysis is unification-based, that 

is, multiple targets of a pointer should be merged. Such 

collapsing merges pointer fields and integer fields into the one 

and is unsound in the presence of integer/pointer conversion. 

  Necula et al. propose CCured, which is a program 

transformation system that adds memory safety guarantees to 

C programs15). Though CCured is not pointer analysis, their 

work has some similarity with ours in doing some classification 

about memory usage. They classify pointers, while we classify 

locations. Their approach is less precise than ours. If a pointer 

 points to a non-well-typed location, all other locations 

pointed by  are imprecisely considered to be a non-well-
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typed. 

  There are several works that develop the reachability 

predicates on low-level memory model such as an array of 

byte2,4,8). These predicates are designed for specifying the 

properties of linked data structures, and more expressive than 

ours. On the other hand, they cannot handle the integer/pointer 

conversion. Our analysis is less precise, but efficient and fully 

automatic. 

  We implemented our analysis based on the set-based 

constraint system. It can also be implemented efficiently by 

BDD-based bottom-up solver by preparing all kinds of offset 

calculations by predicates13), that is possible as our abstract 

locations are finite and fixed. 

We gave a field-sensitive pointer analysis for C with 

integer/pointer conversion. Based on our formal model of 

memory, we could reduce all the intricacies of arbitrary type 

conversions to the simple reachability problem. Our analysis 

was derived as a natural abstraction of the semantics, and easily 

shown to be sound. As our analysis can handle all low-level 

features of C, and has no assumption on the implementation-

dependent features, it is directly applicable to many compilers. 

Also, analyses just for type-safe subset of C can be combined 

with our analysis and extended to handle full C. We hope that 

our work releases compiler developers from the struggle with 

subtle bugs caused by the combination of field-sensitivity and 

arbitrary type conversions. 
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