
SEIKEI UNIVERSITY

Efficient and Flexible Agreement Protocols Based on
Trustworthiness Relation of Peers in Unstructured

Peer-to-Peer Overlay Networks

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF SCIENCE AND TECHNOLOGY

in Computer and Information Science

by

Ailixier Aikebaier (Alisher Akber)

Dissertation committee:

Professor Makoto Takizawa, Committee Chair
Professor Leonard Barolli

Professor Shin-ich Kuribayashi
Professor Hitomi Murakami

Professor Kimio Oguchi

2011

c©2011 Ailixier Aikebaier (Alisher Akber)

Efficient and Flexible Agreement Protocols
Based on Trustworthiness Relation of Peers

in Unstructured Peer-to-Peer Overlay
Networks

This dissertation of Ailixier Aikebaier (Alisher Akber)
is approved and is acceptable

in quality and form for publication:

Makoto Takizawa, Committee Chair

Leonard Barolli

Shin-ich Kuribayashi

Hitomi Murakami

Kimio Oguchi

Seikei University
2011

i

Contents

List of Figures vi

List of Tables vii

Acknowledgments viii

Curriculum Vitae ix

Abstract x

1 Introduction 1
1.1 Peer-to-peer (P2P) overlay networks 1

1.1.1 Background . 1
1.1.2 P2P overlay networks . 2
1.1.3 Principles of the P2P paradigm 3
1.1.4 Classification . 5
1.1.5 Applications . 6

1.2 Agreement protocols . 7
1.2.1 Background . 7
1.2.2 Classification . 7

1.3 Overview of this dissertation . 8

2 Trustworthiness 9
2.1 Acquaintances . 10
2.2 Subjective trustworthiness . 13

2.2.1 Direct communication 14
2.2.2 Acquainted communication 16

2.3 Objective trustworthiness . 18

ii

2.3.1 Types of objective trustworthiness 18
2.3.2 Computation of trustworthiness 19

2.4 Confidence on subjective trustworthiness 22

3 A Basic Agreement Protocol 25
3.1 Precedent relations . 25

3.1.1 E-precedent relation . 27
3.1.2 P-precedent relation . 29

3.2 Coordination procedure . 30
3.2.1 Agreement conditions 31
3.2.2 Global decision function 32
3.2.3 Local decision function 32
3.2.4 Initial value . 34
3.2.5 Meta coordination . 36
3.2.6 Types of coordination strategies 36
3.2.7 Inconsistent strategies 38
3.2.8 Resolution among different strategies 39
3.2.9 Behaviors of peers . 44

3.3 A history of a peer . 46
3.3.1 History . 46
3.3.2 Methods on a history . 47
3.3.3 Compensation . 49
3.3.4 Constraints on values . 50

3.4 Back-warding strategies . 51
3.4.1 Cuts . 51
3.4.2 Re-selectable values . 57

4 Distributed Agreement Protocols 59
4.1 Value exchange schemes . 59

4.1.1 Single value exchange scheme 59
4.1.2 Multi-value exchange (MVE) scheme 60

4.2 Multipoint relaying (MPR) scheme 65
4.2.1 Basic algorithm . 65
4.2.2 Faults . 68

4.3 Trustworthiness-based broadcast (TBB) scheme 70
4.3.1 Trustworthiness of peer 70
4.3.2 Trustworthiness - based broadcast (TBB) algorithm 71

iii

5 Evaluation 75
5.1 Assumptions . 75
5.2 Scenarios . 76
5.3 Results . 78

6 Conclusions and Future Work 81
6.1 Conclusions . 81
6.2 Future work . 83

Bibliography 84

iv

List of Figures

2.1 Acquaintance peer pj . 12
2.2 Direct interaction. 13
2.3 Indirect interaction. 14
2.4 Acquainter. 17
2.5 Objective trustworthiness. 20
2.6 Objective trustworthiness ot01. 21

3.1 Coordination protocol. 31
3.2 Lub and Glb.. 35
3.3 Coordination procedure of a peer. 37
3.4 Mining and backward strategies. 39
3.5 Resolution of multiple recoverable cuts. 42
3.6 Aggressive peer. 45
3.7 History methods. 48
3.8 Coordination procedure of a peer. 48
3.9 Most recently uncompensatable sequence. 50
3.10 Obtainable cut. 53
3.11 Cuts. 54
3.12 Multiple cuts. 56

4.1 Multi-value exchange. 62
4.2 Maximal-value exchange (XVE) scheme. 63
4.3 Single-value exchange (SVE) scheme. 63
4.4 Multi-value exchange (MVE) scheme. 64
4.5 Multipoint relays. 66
4.6 Failure in multipoint relays. 68
4.7 Trusted neighbors in multipoint relays. 73
4.8 Trustworthiness of peer. 74

v

5.1 Number of messages (F = 0.05). 79
5.2 Number of messages (F = 0.1). 79
5.3 Network coverage to fault ratio. 80
5.4 Number of messages to fault ratio. 80

vi

List of Tables

3.1 Consistency among strategies . 39
3.2 Consistency conditions. 43

vii

Acknowledgments

The author have received tremendous amount of support from so many people
upon completing the degree that he cannot enumerate all of them at this moment.

First of all, the author would like to express his endless appreciation to his
supervisor, Professor Makoto Takizawa, for his kindness, support, and instruction.
He is the one of the persons who has the most influence in authors life, the author
had study many things not only about how to do research but also how to be a
good person, and how to do things correctly. He has always gave the best support
and help to the author when it needed.

Doctor Tomoya Enokido (Rissho University), Doctor Kenichi Watanabe (Tokyo
Denki University), and Distributed Systems laboratory members of Seikei univer-
sity and Tokyo Denki university, gave the author helpful discussions, instruction,
and comments. The author would like to dedicate this work to all of them, because
this work could not be done without all of them.

Most importantly, the author would like to acknowledge his uncle (Heyder
Peyzulla) and aunt (Munire) for introduced him to Professor Makoto Takizawa
and made it possible to him to came to Japan at the first place.

Lastly, the author would like to express his appreciation and love to his par-
ents (Akber Peyzulla and Patigul Mijit), younger brother (Mirzat Akber), grandma
(Kurbanem), uncle (Ablimit Mijit and Behtiyar Dawut), aunt (Rena Mijit and
Mahire Mijit), niece (Berna Behtiyar and Nazile Ablimit) and all other relatives
for giving him behind-the-scenes support over many years. Words cannot express
author’s love to them.

viii

Curriculum Vitae

Ailixier Aikebaier (Alisher Akber)

2004 B.E. in Computers and Information Science, Xinjiang University,
China.

2009 M.E. in Computers and Systems Engineering, Graduate School
of Science and Engineering, Tokyo Denki University, Japan

2011 Research Fellowship, Japan Society for the Promotion of Science
(JSPS)

2011 Ph.D. in Computer and Information Science, Seikei University, Japan

Field of Study

Peer-to-Peer systems, Fault tolerance, Agreement protocols,
Consensus problems, and Distributed systems.

ix

Abstract

Nowadays information systems are being shifted to distributed architectures to
obtain the benefits like scalability, autonomy, and faulty-tolerance. Since peer-
to-peer (P2P) systems are open world systems differently from other systems like
cloud computing model, a huge number of computers and various types of com-
puters with P2P application are interconnected in large-scale P2P overlay net-
works lying on the top of underlying physical computer networks like the Internet
Protocol (IP) network. Except centralized or hybrid P2P systems, there is no cen-
tralized index server which controls the whole P2P system, and the peers which
represent the individual computers in the P2P system, autonomously take actions
and cooperate with each other to realize their purpose such as file sharing, build-
ing distributed storage, instant messaging, realizing distributed computation, con-
tents delivery, cooperative work, and so forth. Because of the nature of the P2P
systems, it is difficult for every peer to figure out what kinds of information are
distributed to what peers, what kinds of peers exist in P2P overlay networks, and
what kinds of relations among peers are. In addition, malicious peers and faulty
peers like a crash-faulty peer can join and leave a P2P system without being au-
thenticated and authorized. This rises a question on how each peer to trust a target
peer in the P2P systems. Therefore efficient and reliable synchronization methods
are required to be supported in order to achieve the cooperation among peers in
the P2P systems. The P2P system is a disruptive technology for deploying ap-
plications that scale to millions of simultaneous participants. Because each user
contributes computer and networking resources, it offers a low-barrier-of-entry
platform with high scalability. Extensions to the basic model could offer different
grades of service as well as address limitations of the basic model. These limita-
tions are due to the decentralized character of the overlay and the unreliability of
the peers. As disruptive technology, P2P systems raise important questions about
the long-term impact on other approaches for video delivery, telephony, and other
information delivery services. In addition, P2P applications to date have been pri-

x

marily adopted in the consumer space. Requirements for further growth such as
manageability, security, or ability to generate revenue may in the near term require
hybrid variations of the basic model. The ability to incorporate reliable and secure
transactions is still nascent.

An agreement or consensus procedure is one of the most essential parts in our
daily life. In our history, many astonishing achievements are done by the col-
laboration of many peoples, like the pyramids in Egypt. In order to achieve the
collaboration, we need agreement procedures for a group of multiple participants
to support it, and that is why it is essential in our daily life. Without exception
in computer world, we can find many footprints of agreement procedures in ba-
sic and important parts of the information systems. For example, the two-phase
commit protocol (2PC) in transaction processing, distributed database systems,
and computer networks. The two-phase commit protocol (2PC) is a typical type
of an atomic commitment protocol. It is a distributed algorithm that coordinates
all the processes that participate in a distributed atomic transaction on whether
to commit or abort (roll back) the transaction. The 2PC protocol is a special-
ized type of consensus protocol. Following the transformation of the information
systems from the traditional centralized client-server models to the decentralized
distributed models like P2P systems, how to achieve the agreement procedure in
fully distributed environment become a question to us to be solve. In human so-
cieties, participants make an agreement in more flexible and efficient ways. For
example, participants can change their mind in the agreement procedure. In this
dissertation, we first introduce the novel relations among values which each peer
can take from a given domain, existentially (E-) and preferentially (P-) precedent
relations, which describe the relations between values in the domain of a peer.
If a peer can take a value b after taking a value a, the value a E-precedents the
value b. Suppose a peer can take a pair of values a and b after taking value c, if
the peer prefers the value a to the value b, it denotes the value a P-precedents the
value b. Based on the precedent relations, we discuss the flexible agreement proto-
col. Then, in order to improve the efficiency of the agreement protocol, we newly
introduced the concept of obtainable cuts, which is a set of values which are ex-
changed by the participants during the agreement procedure and also satisfies the
agreement condition. In addition, by defining the forward and backward strategies
and history of values which each peer has so far taken, we introduces an efficient
way to discover the obtainable cuts in the history of peers, ultimately improves the
overall performance of the agreement protocol. By introducing the multi-value ex-
change (MVE) scheme, the time spent for a complete agreement procedure can be
significantly reduced, therefore the efficiency of agreement protocol is improved.

xi

In order to achieve the agreement procedure in a fully distributed system, many
problems has to be solved, for example, how to exchange information among par-
ticipants, how to detect the agreement condition being satisfied through out the
network and so on. As one of the most important steps of the agreement proce-
dure, the message exchange phase is in charge of delivering and collecting infor-
mation from all participants in the group. To realized the distributed agreement
procedures, reliable message exchange protocols among peers are required to be
realized as the most important phase of the whole procedure. In order to achieve
our goal which is required to efficiently and reliably realize agreement procedure
in a fully distributed system, we newly proposed a trustworthiness-based broad-
cast (TBB) algorithms in addition to the multi-value exchange (MVE) scheme. In
this dissertation, we show our approach to designing and realizing the agreement
procedure in a fully distributed system. The evaluation results show that by using
our proposed trustworthiness-based (TBB) scheme, totally 22 percentage of the
unnecessary message broadcast can be reduced in the network compared with the
multipoint relay algorithm and pure message flooding. Furthermore, a message
can be delivered to every peer in presence of faulty peers. By improving the ef-
ficiency of the message exchange phase of the protocol, we improved the overall
performance of the agreement protocol.

The concepts, algorithms, implementation, and evaluation of the agreement
protocol discussed in this dissertation can be not only theoretical but also practical
foundation to design and develop various of applications on P2P overlay networks.

Keywords: Peer-to-Peer (P2P) overlay network, Agreement protocol, Consen-
sus problems, Trustworthiness, distributed systems.

xii

Chapter 1

Introduction

1.1 Peer-to-peer (P2P) overlay networks

1.1.1 Background

Traditional information systems have been realized in client-server systems (CSSs).
A CSS is composed of a server, a process which supports client with some ser-
vice for applications, and a client which is a interface between applications and
servers. During issuing requests to servers, application programs (APs) are per-
formed on clients and application servers in 2-tier and 3-tier CSSs, respectively.
On receipt of requests from APs on clients/application servers, the requests are
performed on servers and then responses of the requests are sent back to the APs.
Here, each computer can play on role of client, application server, and database
server. In the CSS, all clients access a centralized serer like a database server
since data is stored in the server. Consequently, the server might be performance
bottleneck due to the heavy traffic and furthermore a single point of failure. More-
over, servers cannot meet every user’s requirements since various types and a huge
number of computers are interconnected in CSSs.

According to the advance of computer and network technologies and varieties
of applications, information systems are now being shifted to peer-to-peer (P2P)
systems from CSSs. Various types of applications and businesses can be cost-
effectively realized in the P2P systems. Here, due to the fact that systems or
applications are called “peer-to-peer” not because of their internal operation or
architecture, but rather as the result of how they are perceived externally, there are
number of different definitions on “peer-to-peer”, that is there may not general
agreement on what is and what is not “peer-to-peer”. On the web [1], “peer-to-

1

peer” systems have been defined as a class of applications that takes advantage of
resources-storage, cycles, content, human presence-available at the edges of the
Internet. This definition includes systems which rely upon centralized servers and
systems on the field of Grid computing [2, 3]. The difference between P2P and
Grid computing is often discussed, but it is beyond the scope of this dissertation
to discuss the difference.

In a P2P system, each process on computers is a peer process which can pro-
vide the same service. A group of peers on computers are cooperating to achieve
some objectives by exchanging messages. Each peer is often called servent which
is the compound word of SERVer and cliENT since the peer can play any role of
client, application server, or database server. Resources, indices which indicate
locations of the resources, and load on a server in a CSS are distributed to peers
interconnected in a network of peers. The network is formed on the top of the
underlying physical computer network and is thus referred to as a P2P “overlay”
network [4, 5]. Connection between peers in a P2P overlay network is a virtual
or logical link. Even if a source peer does not know an IP address of a destina-
tion peer, a message from the source peer can be delivered to the destination peer
through a P2P overlay network.

A P2P overlay network is characterized by scalability, i.e. a huge number of
peers are connected to the overlay network, stateless infrastructure, i.e. network
topology is dynamically changed since every peer can join/leave the overly net-
work whenever the peer would like to, open world, i.e. any kind of computer with
a P2P application can join the overlay network, robustness, i.e. a P2P system does
not have a single point of failure because the system does not depend on servers,
and, ad-hocracy, i.e. every peer autonomously operates.

1.1.2 P2P overlay networks

Peers in P2P applications communicate with other peers using messages transmit-
ted over the Internet or other types of networks. The protocol for a P2P application
is the set of different message types and their semantics, which are understood by
all peers. The protocols of various P2P applications have some common features.
First, these protocols are constructed at the application layer of the network pro-
tocol stack. Second, in most designs peers have a unique identifier, which is the
peer ID or peer address. Third, many of the message types defined in various
P2P protocols are similar. Finally, the protocol supports some type of message-
routing capability. That is, a message intended for one peer can be transmitted via
intermediate peers to reach the destination peer.

2

To distinguish the operation of the P2P protocol at the application layer from
the behaviour of the underlying physical network, the collection of peer connec-
tions in a P2P network is called a P2P overlay. While their host is connected to
the overlay, each end user shares in the cost of operating the overlay. This cost
sharing by the participants lowers the barrier of entry to overlay providers. The
low barrier of entry means that little hardware or network investment is needed to
launch a P2P application.

The practice of overlay networks predates the P2P application ear. For exam-
ple, protocols used in Internet news servers and Internet mail servers are early ex-
amples of widely used overlay that implement important network services. These
specialized overlay networks were developed for various reasons, such as enabling
end-to-end network communication regardless of network boundaries caused by
network address translation (NAT).

Another important reason for the use of overlays is to provide a network ser-
vice that is not yet available within the network. For example, multicast routing
is a network service that to date has been only partially adopted on the Internet.
Multicast routing enables a message sent to a single multicast address to be routed
to all receivers that are members of the multicast group. This is important for re-
ducing network traffic for one-to-many applications such as video broadcasting
or videoconferencing. Since multicast routing is not universally supported in In-
ternet routers, researchers developed an application layer capability for multicast
routing called application layer multicast (ALM) or overlay multicast (OM).

Finally, other examples of network services that can be supported using an
overlay include secure delivery of packets, trust establishment between arbitrary
endpoints, anonymous message delivery, and censorship-resistant communica-
tions. Such services are incompletely provided in today’s Internet and can be more
rapidly delivered using an overlay network because application layer features do
not require network hardware upgrades.

1.1.3 Principles of the P2P paradigm

A peer-to-peer overlay is a distributed collection of autonomous end-system com-
puting devices called peers that form a set of interconnections called an overlay
to share resources of the peers such that peers have symmetric roles in the overlay
for both message routing and resource sharing. The P2P overlays has following
paradigm: self-organization, role symmetry, resource sharing, scalability, peer au-
tonomy, and resiliency.

The peers self-organize the overlay. Self-organization is a characteristic of

3

many physical and social systems such that the organization of the system in-
creases without being controlled by an encompassing agent or the environment.
An overlay network design that is consistent with self-organization would not use
a star topology or a broadcast topology to operate the peers or form the overlay.
Self-organization means that peers cooperate in the formation and maintenance
of the overly, with each peer using local state and partial information about the
overlay.

The peers have symmetric roles. In contrast to client/server computing, where
the roles of the endpoints are /textitasymmetric, peers are functionally equal. Any
peer can store objects on behalf of other peers, support queries, and perform rout-
ing of messages.

Peer-to-peer overlay are highly scalable. Several P2P applications operate
today with millions of peers participating. An important dimension of scalability
is the ability to operate the P2P overlay as the size grows by 100 times or more.
Scalability means that the network and computing resources used at each peer
exhibit a growth rate as a function of overlay size that is less than linear.

Peers are autonomous. Each peer determines its capabilities based on its own
resources. Each peer also determines when it joins the overlay, what requests it
makes to the overlay, and when it leaves the overlay.

A P2P overlay provides a shared resource pool. The resources a peer con-
tributes include compute cycles, disk storage, and network bandwidth. There are
minimum resource contribution threshold for a peer to join the P2P overlay. Each
peer’s resources are used to support the operation of the overlay and provide ap-
plication services to other peers.

Peer-to-peer overlays are resilient in the face of dynamic peer membership.
Since peers have an incomplete view of the overlay topology and peer member-
ship, the overlay depends on intermediate peers to forward messages to the correct
region of the overlay. When peers leave or join the overlay, the routing paths are
affected. The overlay graph structure or geometry contributes to resilience by
enabling connectedness in the topology despite peer of endpoints.

The principles of P2P overlays are generally not completely satisfied in any
single system. Hybrid P2P systems may relax one of more these design goals.
Some systems use central servers to authenticate peers, after peers are authenti-
cated, the overlay itself operates without the central server.

4

1.1.4 Classification

P2P architectures are categorized in terms of a level of overlay network central-
ization, and P2P overlay networks are categorized in terms of a level of overlay
network structure, respectively [5]. There are three types of P2P architectures,
i.e. hybrid decentralized, purely decentralized, and partially centralized ones,
and there are three types of P2P overlay networks, i.e. unstructured, structured,
and loosely structured ones, respectively.

• Overlay network centralization

- Hybrid decentralized: A CSS (there is a centralized server managing
the whole P2P system by maintaining directories of information of
file locations) and a P2P system (files are transferred with end-to-end
communication) are mixed.

- Purely decentralized: There is no centralized server, and all peers
provide the same service and act as both servers and clients. The peers
are called servents.

- Partially centralized: The basic concept is same as the purely decen-
tralized architecture. However, several peers, called superpeers, have
a more important role, e.g. a superpeer manages index information
of its normal peers and acts as a bridge/gateway between the normal
peers.

• Overlay network structure

- Unstructured: A file location depends on a topology of an overlay
network, so an efficient look-up protocol is needed, e.g. flooding al-
gorithm.

- Structured: Topology of an overlay network is controlled, and a file
location is precisely specified.

- Loosely structured: An overlay network structure is in between un-
structured and structured networks, and a file location is not com-
pletely specified.

In this dissertations, we aim at discussing a efficient and flexible agreement
protocol in a decentralized and unstructured P2P system.

5

1.1.5 Applications

A definition of a P2P application has been proposed by Dave Winer [6]. P2P
applications have the following characteristics:

• User interfaces do not run in a web browser.

• Each computer can act as both servers and clients.

• It is easy for users to manipulate and implement a system.

• Tools for creating users’ own content and additional functionality are in-
cluded.

• Users can create or join a P2P community.

• A system does something new or exciting.

• Cross-network protocols such as XML-RPC and SOAP are supported.

We point to the following applications as an example of a P2P application:

• File sharing system: Napster [7], Gnutella [8], WinMx, LimeWire [9],
Kazaa [10], Bearshare, Morpheus, eDonkey, BitTorrent, Ares Galaxy, iMesh,
etc.

• Distributed storage: Freenet [11], Free Haven [12], Distributed Hash Tables
(DHTs) [13, 14, 15, 16, 17, 18], etc.

• Instant messaging: P2P Messenger, ICQ [19], Jabber [20], Skype, etc.

• Distributed computation: OceanStore [21], SETI@home (search for extra
terrestrial intelligence at home) [22], HyperBee, etc.

• Contents delivery service: Akamai, Kontiki, Peercast, Streamer P2P radio,
Dijjer, etc.

• Network game: Diablo, Age of Empire, etc.

• Cooperative work: Groove Workspace, etc.

6

1.2 Agreement protocols

1.2.1 Background

The agreement procedure or consensus making are the most basic and essential
process in our human society. Since people are living in a unit of group, from
the ancient time the agreement procedure are needed in order to achieve some
objectives. For example, in the ancient times when our ancestors go for hunting,
before begin the hunt they have to make sure every ones position and role on the
hunt and other things like who will attack first who is the leader of the team and
how to bring the prey to home after catch it and so on. Each of these decisions
are the outcome of a agreement procedure. In addition, some of the most stunning
architectures in our world like the pyramid in Egypt also shows the importance
of the agreement procedure, without collaboration of the million of people it is
impossible to construct project like pyramid. In order to do collaboration, the
agreement procedure are needed.

Nowadays information systems are being shifted to distributed architectures
to obtain the benefits like scalability, autonomy, and faulty-tolerance. Follow-
ing the transaction from centralized systems to the decentralized one, distributed
agreement protocol are considered as a successor for the traditional centralized
agreement protocols.

1.2.2 Classification

According to the structure of the systems, the agreement protocols can classify
into following two groups:

• Centralized systems.

• Decentralized systems.

In centralized systems, like two-phase commit protocol [57] in transaction
processing, databases, and computer networking. It is a distributed algorithm that
coordinates all the processes that participate in a distributed atomic transaction
on whether to commit or abort (roll back) the transaction. The characteristic of
the system is that a coordinator in the system collects and make the final decision
on the agreement value, so that whole system is centralized controlled by the
coordinator.

7

In decentralized systems, there are no centralized control in the system. There-
fore, this kind of systems can archive high reliability and scalability, but on the
same time the problems like efficiency and trustworthiness has to be concern.

Nowadays, the traditional centralized systems are being shifted to decentral-
ized one. Decentralized systems in systems theory are naturally occurring, usually
self-regulating systems found which function without an organized center or au-
thority. A system that is decentralized lacks a nuclear body or center of control,
and is commonly composed of many components which work in unison, and to-
gether form a stable structure. Such systems can be found in society as well as
in nature. For example, a market economy is a system formed by human trade
and business. Therefore, the traditional centralized agreement protocols are trans-
forming into decentralized agreement protocols. On the other hand, to improve
and solve the problems rises with the decentralization like trustworthiness among
peers and efficiency of the system in terms of the message broadcasting in the
system has to be consider and new algorithms are needed.

1.3 Overview of this dissertation

The rest of the dissertation is organized as follows. In chapter 2, we present the
trustworthiness concept on peer-to-peer (P2P) overlay networks. In chapter 3, we
introduce the basic agreement procedure and different strategies to make agree-
ment among peer processes. In chapter 4, we discuss distributed agreement pro-
tocols with difficulty to achieve the agreement within given group of peers. We
also discuss two novel algorithms to improve the efficiency and reliability of the
agreement protocol. In chapter 5, we show the evaluation result of the proposed
algorithms. In chapter 6, we conclude this dissertation and suggest some areas for
future research.

8

Chapter 2

Trustworthiness

In a fully distributed, unstructured peer-to-peer (P2P) overlay network, there is
no centralized coordinator like centralized index [7] and super peer [10], A peer
process (peer) pi is cooperating with another peer pj by not only exchanging mes-
sages but also remotely manipulating objects in pj . There are many discussions
on how to detect a target peer which holds an object like flooding algorithms
[25, 28, 8, 35, 32, 33, 17, 38]. A peer has to manipulate a target object in addition
to detecting the target object. Only a peer which is granted an access right (per-
mission) is allowed to manipulate the target object in an authorized way. Peers
are classified into holder peers where an object o is stored, manipulation peers
which are allowed to manipulate the object o, and authorization peers which can
grant access rights of the object o to other peers [34, 35].

In a fully distributed P2P overlay network, each peer has to obtain service in-
formation on what peers support what types of service through communicating
with its acquaintance peers. A peer may leave and join the network and obtain
new service by downloading and removing files. Another peer might be faulty.
Service changes of peers are propagated to peers through peer-to-acquaintance
communications. It takes time to propagate the service change information in
the network. Hence, a peer might hold obsolete service information. Here, it is
critical for each peer to recognize which acquaintance is trustworthy on service in-
formation. There are subjective and objective types of the trustworthiness of each
acquaintance. In the subjective approach, a peer obtains a trustworthiness opinion
of an acquaintance by communicating with the acquaintance. A peer issues an ac-
cess request to an acquaintance and then receives a reply from the acquaintance.
If the reply satisfies the access request, the peer perceives the acquaintance to be
more trustworthy. On the other hand, a peer obtains the trustworthiness opinions

9

of an acquaintance from other peers in the objective approach. The more trusted
an acquaintance is, the more trustworthy the acquaintance is perceived to be. This
is similar to the traditional reputation concept [37]. In this paper, we newly dis-
cuss the trustworthiness concepts based on the confidence of each peer. The less
confident of its own subjective trustworthiness the peer is, the more significant the
objective trustworthiness opinions of other peers is. If the peer is more confident
of its own opinion, the peer only takes trustworthiness opinions of acquaintances
which the peer knows well and whose opinions are similar to its own opinion. A
most confident peer takes only its own opinion. There are some varieties between
them. We discuss types of the objective trustworthiness in this paper. In addition,
we discuss how a peer takes the types of trustworthiness based on the confidence.

2.1 Acquaintances

In P2P overlay networks, applications have to not only detect target objects [24, 7,
32, 8, 33] but also manipulate the objects. Even if a target object is detected, the
object cannot be manipulated if the requesting peer is not authorized. An access
right is specified in a form 〈o, op〉 for an object o and a method op [27]. An access
request to manipulate an object o in a method op is also written in a form 〈o, op〉
as well. A peer is allowed to manipulate the object o in the method op only if an
access right 〈o, op〉 is granted to the peer.

A pair of peers pi and pj are requesting and requested peers, respectively, if
pi issues an access request to the other peer pj . A holder peer p holds an object o
(written as p | o). A manipulation peer p can manipulate an object o in a method
op (p |=op o), i.e. p is granted an access right 〈o, op〉. An authorization peer p
can grant an access right 〈o, op〉 to another peer (p �op o). A peer p is a serving
peer of an access request 〈o, op〉 (p �op o) iff p | o, p |=op o, or p �op o. Service
supported by a peer is specified in a form 〈o,�, op〉. For example, a manipulation
peer p |=op o supports a type of service ρi (= 〈o, |=, op〉). If a peer p receives a
request 〈o, op〉 for manipulating an object o in a method op from an application, p
issues an access request 〈o, �, op〉 to an acquaintance pi. For example, if pi knows
pj holds an object o (pj | o) and p is not granted an access right 〈o, op〉, p asks pj to
grant 〈o, op〉, i.e. issues 〈o, �, op〉 to pi. An acquaintance peer pi of a peer p with
respect to a service type ρ (= 〈o, �, op〉) (p→(pi�opo)) is a peer which p knows
about service ρ, i.e. pi�opo or pi has an acquaintance pi (pi→(pj�opo). Here, pi is
a direct acquaintance of p with respect to a service type 〈o, �, op〉 iff pi�opo. pj is
an indirect acquaintance of p iff pi does not support the service 〈o, �, op〉 but has

10

an acquaintance pk (pk→(pj�opo)). However, p may not be an acquaintance of pi
even if pi is an acquaintance of p. A friend peer pj of a peer pi is an acquaintance
of pi with which pi can directly communicate. If pj is a friend of pi, pi is assumed
to be a friend of pj .

In order to get a friend of another peer pj , a peer pi has to not only know a
type of service of pj but also communicate with pj . If pj allows pi to communicate
with pj , pj is a friend of pi. Let V (pi, ρ) be a set of acquaintances of a peer pi with
respect to a service type ρ (= 〈o, �, op〉), i.e. {pj | pi → (pi �op o)}. A peer p is
referred to as directly satisfy an access request 〈o, �, op〉 if p�opo. p is referred to
as indirectly satisfy 〈o, �, op〉 if p→(pi�opo). p satisfies an access request 〈o, �,
op〉 if p directly or indirectly satisfies 〈o, �, op 〉. Otherwise, p is not satisfiable
for 〈o, �, op〉. For example, suppose a peer pi asks an acquaintance pj to detect
an object o, i.e. 〈o, |, 〉. If the acquaintance pj holds o, pj satisfies 〈o, |, 〉. Next,
consider an access request ρ = 〈o, |=, op〉, i.e. pi would like to manipulate an
object o in a method op. aij(ρ) = 1 if an acquaintance pj manipulates o in the
method op. Otherwise, aij(ρ) = 0.

Each peer includes its service information in access requests and responses
which the peer sends. A peer p sends a query request 〈o, ?, op〉 to an acquaintance
pi to get what type of service on o and op pi can support to p. On receipt of the
query, the acquaintance pi sends an answer 〈pi, o, �, op〉 to p if pi�op o. If pi�op/ o
but pi→(pj �op o), pi sends an answer 〈pj , o, �, op〉 to p. On receipt of the answer
〈pk, o�, op〉 from pi, p stores 〈pk, o�, op〉 in the database DBi Unless pi supports
〈o, �, op〉, pi sends 〈pi, o, , op〉 to p. Suppose a peer pj loses service 〈o, �, op〉.
The peer pj sends a loss message 〈pj , o, �, op〉 to its acquaintances. On receipt of
the loss message 〈pk, o, �, op〉, the peer p removes 〈pk, o, �, op〉 from DBi. Here,
p sends a loss message 〈pk, o, �, op〉 to the acquaintance. Next, suppose that a
peer pj newly obtains service 〈pk, o, �, op〉. The peer pj sends a new message
〈pk, o, �, op〉 to its acquaintances. On receipt of the new message 〈pk, o, �,
op〉, p adds 〈pk, o, �, op〉 is DBi. Thus, peers exchange service information of
their acquaintances with each other. It takes time to propagate service change of
a peer. Suppose a peer pi holds service information 〈pk, o, �, op〉. If a peer pk
supports service 〈o, �, op〉, pi is proper. Otherwise, pi is faulty. For example, a
peer pi can ask its acquaintances about a service type 〈o, �, op〉. On receipt of
the request from pi, an acquaintance pj sends the service information pj�opo or
pj→(pk�opo) to the peer pi. If pi receives the service information pj→(pk�opo)
from pj , pk gets an acquaintance of pi with respect to the service type 〈o, �, op〉.
The service information 〈pk, �, op〉 obtained from the acquaintances is stored in
the database DBi of pi. The peer pi informs another acquaintance pk of the service

11

information 〈pk, �, op〉. Since the size of DBi is finite, some service information
might be lost to make space to store new service information. For example, the
least recently used service information of a type of service 〈pk, �, op〉 is thrown
away. Here, pk still thinks pi to be its acquaintance on 〈o, �, op〉 but pi loses the
service information. If pk asks pi about 〈o, �, op〉, pi does not know anything
about the service. Here, the information pk→(pi�opo) is obsolete.

Suppose a peer pi issues a service request ρ (= 〈o, �, op〉) to an acquaintance
pj , i.e. pi→(pj �op o). There are two cases. In one case, pj supports the service
type ρ. Here, pj performs the access request ρ and then sends the reply r(ρ) to
pi. In the other case, the acquaintance pj does not support the service type ρ but
knows an acquaintance pk which supports ρ, i.e. pj→(pk �op o). There are two
cases. First, the acquaintance pj just informs the peer pi of pk. Then, pi issues
the access request ρ to pk. Secondly, pj forwards the access request ρ to pk. On
receipt of the reply r(ρ) from pk, pj forwards the reply r(ρ) to pi. If pk informs pj
of a peer pk which supports the service type ρ, pj forwards the access request ρ to
pk. If pj receives the reply r(ρ) from pk, pj forwards the reply r(ρ) to pi. Here, pj
is referred to as acquaintance of the requesting peer pi with respect to the service
type ρ.

pk

pjpi pk

ρ

ρ

r(ρ)

pjpi pk

ρ

(1) Direct

(2) Agent

ρ

r(ρ)

Figure 2.1: Acquaintance peer pj .

12

2.2 Subjective trustworthiness

Let pi be a peer and pj be an acquaintance of the peer pi. Let ρ be an access request
〈o, �, op〉. A peer pi makes a decision on how much pi can trust an acquaintance
pj with respect to an access request 〈o, �, op〉 by itself. There are two cases,
direct and indirect interactions with an acquaintance. First, suppose that pj is
a direct acquaintance of pi and pj�opo, i.e. pi→(pj�opo). A peer pi issues an
access request ρ to an acquaintance pj and receives a reply r(ρ) from pj as shown
in Figure 2.2. The peer pi measures the satisfiability value sij(ρ) showing how
much the reply r(ρ) is satisfiable for the request ρ.

Next, suppose a peer pi does not know to which acquaintance the peer pi can
issue an access request ρ but knows an acquaintance pj which knows some serving
peer of the access request ρ, i.e. pj → (pk�opo). The peer pi asks the acquaintance
pi to introduce some serving peer of the access request ρ. Then, the acquaintance
pj introduces a peer pk to pi if pj knows an acquaintance pk to be a serving peer,
pk�opo. Here, pk is an acquaintance of pi with respect to the access request ρ.
The peer pi issues the access request ρ to pk and then receives a reply r(ρ) from
pk as shown in Figure 2.3. Here, the peer pi calculates the subjective trustwor-
thiness of pk from the reply r(ρ) as discussed later. In addition, pi perceives the
acquaintance pj to be trustworthy if pk returns the more satisfiable reply to pi,
because the acquaintance pj introduces pk to pi. Otherwise, the trustworthiness of
the acquaintance pj is decreased in pi.

Figure 2.2: Direct interaction.

13

Figure 2.3: Indirect interaction.

2.2.1 Direct communication

A peer pi issues an access request ρ to an acquaintance pj . Then, pi receives
a reply r(ρ) from pj . The peer pi obtains the satisfiability value sij(ρ) of the
acquaintance pj from the reply r(ρ). The satisfiability for each type of access
request is discussed in papers [31, 36] by taking into account how many peers an
access request passes to get to a target peer. In this paper, the satisfiability sij(ρ)
for an access request ρ issued to an acquaintance pj is characterized in terms of
whether or not the reply r(ρ) satisfies ρ, how long it takes to get r(ρ), and how
much quality of service (QoS) the reply r(ρ) supports. We consider another aspect
of the satisfiability. First, the answerability aij(ρ) is given as follows:

aij(ρ) =

{
1 if pj satisfies ρ.

0 otherwise.
(2.1)

Suppose a peer pi issues an access request ρ to a pair of acquaintances pj and
pk. Here, suppose pj supports a service type ρ while pk does not support but
knows another peer ph supports the service type ρ. On receipt of the request ρ,
pj sends a reply rij(ρ) to pi. On the other hand, pk forwards the access request ρ
to ph. The peer ph sends a reply rk(ρ) to the peer pk and pk forwards the reply
rk(ρ) to pi. Here, suppose that both the replies rj(ρ) and rk(ρ) satisfy the access
request ρ, i.e. aij(ρ) = aik(ρ) = 1. However, it takes a longer time to obtain the
reply rk(ρ) than rj(ρ). The reply rj(ρ) more satisfies pi than rk(ρ). Let tij(ρ) show

14

the response time of an access request ρ issued by a peer pi to an acquaintance pj .
The peer pi is more satisfiable to receive the reply rij(ρ) from the acquaintance pj
than pk if tij(ρ) < tik(ρ). In this paper, the response time tij(ρ) is given an inverse
of hop number, i.e. how many peer an access request ρ issued by pi hops to get
to a target peer pj . For each request ρ, the allowable maximum time maxtρ and
the allowable minimum time mintρ are defined. Suppose it takes τ time units to
receive a reply rij(ρ) from an acquaint pj since a peer pi sends a request ρ to pj .
tij(ρ) = 1 if τ ≤ mintρ and tij(ρ) = 0 if τ ≥maxtρ. tij(ρ) = (τ - mintρ) / (maxtρ
- mintρ) otherwise,

In addition, a peer pi is more satisfiable if the peer pi receives a reply rij(ρ)
from an acquaintance pj whose quality of service (QoS) qij(ρ) like frame rate
and number of columns is higher than the peer pk. Thus, a replies rij(ρ) from an
acquaintance pj to a requesting peer pi is characterized in terms of answerability
aij(ρ), response time tij(ρ), and QoS qij(ρ).

A peer pi records the satisfiability value sij(ρ) obtained each time pi issues an
access request ρ. Then, the peer pi obtains the subjective trustworthiness stij(ρ)
from satisfiability values obtained through the direct interactions with the acquain-
tance pj . In one way, the average value of the satisfiability values is taken as the
subjective trustworthiness stij(ρ). Initially, stij(ρ) = 0 for every acquaintance pj
in pi. A counter cij(ρ) is manipulated for pj and ρ in pi. Initially, cij(ρ) = 0. Each
time pi obtains the satisfiability value sij(ρ), cij(ρ) is incremented by one. Here,
let Sij show the current subjective trustworthiness stij(ρ). Then, the new sub-
jective trustworthiness stij(ρ) is obtained as the average value by the following
function:

DS0(Sij , sij(ρ)) := (cij(ρ) · Sij + sij(ρ))/(cij(ρ) + 1). (2.2)

The larger the counter cij(ρ) is, the more shortly DS0 changes for change
of the satisfiability. In our life, one person recognizes another person pj to be
trustworthy only by observing the most recent behavior. That is, even if a person
pj had not been trustworthy, pj is considered to be trustworthy just after pj does
the satisfiable job. On the other hand, a person may consider the person pj to be
trustworthy on the basis of long-term communications among them. This means,
pj is considered to be trustworthy if pj has so far done satisfiable jobs even if
pj fails to do the current job. In order to take into account different views, we
consider the following function DS1:

DS1(Sij , sij(ρ), αi) := αi · Sij + (1− αi) · sij(ρ). (2.3)

15

αi is a direct subjective trustworthiness (DS) constant (0 ≤ αi ≤ 1) for a peer
pi. If αi = 1, the subjective trustworthiness stij(ρ) is not changed even if a new
subjective trustworthiness stij is obtained. If αi = 0, σij(ρ) is decided only by
the current satisfiability value sij . If αi = cij(ρ) / (cij(ρ) + 1), DS1 is the same as
DS0. The smaller αi is, the more the current satisfiability value sij dominates the
subjective trustworthiness stij(ρ).

2.2.2 Acquainted communication

Suppose a peer pi issues an access request ρ (= 〈o, �, op〉) to an acquaintance
pj but pj does not support the service type ρ. Here, suppose the acquaintance pj
perceives that another peer pk supports the service type ρ. On receipt of the ser-
vice request ρ from the peer pi, the acquaintance pj informs pi that pk is a serving
peer of the service type ρ. Here, pk gets an acquaintance of pi. The acquaintance
pj is referred to as acquainter of pk in pi. The peer pi issues an access request
ρ to pk [Figure 2.4]. Then, pi receives the reply r(ρ) from pk. Here, the satis-
fiability value sik(ρ) is obtained as discussed in the preceding subsection. That
is, the subjective trustworthiness stik(ρ) is calculated by a direct subjective (DS)
trustworthiness function, DS0 or DS1. In addition, the subjective trustworthiness
stij(ρ) to the acquainter pj of pk is changed. The larger the subjective trustwor-
thiness sik(ρ) of the servicing peer pk is, the more stij(ρ) to the acquainter pj is
increased. Let Sij and Sik be the current subjective trustworthiness values of the
peer pi to the acquainter pj and to the serving peer pk, respectively. Let sik be
the satisfiability value which pi obtained from pk for the access request ρ. αi is
the DS constant which is used in the function (3). βi is also a indirect subjective
trustworthiness (IS) constant (0 ≤ βi ≤ 1). The subjective trustworthiness stij(ρ)
is first calculated by the following function:

IS1(Sij , sik, βi) := βi · Sij + (1− βi) · sik. (2.4)

Usually, βi is αi. The IS function (4) is the same as DS1(Sij , sik, αi) if βi = αi.
The acquainter pj may only know a serving peer pk whose subjective trust-

worthiness stjk(ρ) is small. If the peer pj introduces such a less trustworthy
acquaintance pk to the requesting peer pi, the peer pi decreases the subjective
trustworthiness stij(ρ) to the acquainter pj by the formula (4). Hence, if a peer pj
knows only acquaintances whose subjective trustworthiness values are smaller, pj

is wondering if pj loses the trustworthiness from pi and does not acquaint pi with
any peer. In this paper, the acquaintance pj informs pi of not only a serving peer

16

pk but also its subjective trustworthiness stjk(ρ). If the satisfiability value sik(ρ)
is closer to the subjective trustworthiness stjk(ρ), the subjective trustworthiness
stij(ρ) of pi to the acquainter pj is increased. Otherwise, stij(ρ) is decreased.

IS2(Sij , Sjk, sik, βi) = βi · Sij + (1− βi) · δ(Sjk, sik).

δ(S, s) =

{
1 if |S − s|/S ≤ εi

(1− |S − s|/S) otherwise.
(2.5)

εi is a constant (0 ≤ εi ≤ 1). For εi = 0, δ(Sjk, sik) = 1 if Sjk = sik.

pi

pj

pk

<o, ,op>

reply

(pk opo)

(pk opo)

pk opo

:information

:access request

:reply

acquainter

Figure 2.4: Acquainter.

For example, let us consider three peers pi, pj , and pk as shown in Figure 2.4.
Here, pj is an acquainter of pi and pk in a serving peer pk of an access request
ρ. The peer pi asks the acquaintance pj to acquaint pi with a serving peer for the
access request ρ. Then, the acquaintance pj acquaints pi with a serving peer pk
and also informs pi of the subjective trustworthiness stjk(ρ). The peer pi issues an
access request ρ to pk. Suppose the subjective trustworthiness Sij = 0.5 (= stij(ρ))
and Sjk = 0.4. Suppose the peer pi receives a response r(ρ) from the serving peer
pk and the satisfiability value sik = 0.8 is obtained. Suppose βi = 0.8. The new
stij(ρ) is obtained as IS1(Sij, sik, βi) = 0.8 · 0.5 + (1 - 0.8) · 0.8 = 0.4 + 0.16 =
0.56. Since the acquaintance pj introduces a more trustworthy peer pk to pi, the
subjective trustworthiness stij(ρ) is increased to 0.56 from 0.5. On the other hand,
the subjective trustworthiness Sjk (= stjk(ρ)) of the acquaintance pj to pk is 0.4

17

but the satisfiability sik(ρ) which pi just obtains from pk is 0.8. The difference
between Sjk and sik is not small. Here, IS2(Sij , Sjk, sik, βi) = βi · δij + (1 - βi) ·
|Sjk - sik| / Sjk = 0.8 · 0.5 + (1 - 0.8) · (1 - |0.4 - 0.8| / 0.4) = 0.4.

Each peer pi is similarly classified into shortsighted, middlesighted, and longsighted
ones with respect to the IS constant βi as discussed in the DS constant αi.

2.3 Objective trustworthiness

2.3.1 Types of objective trustworthiness

A peer pi listens to what trustworthiness opinions on an acquaintance pj other
peers have with respect to a service type ρ (= 〈o, �, op〉). In the first way, pi col-
lects an opinion on the trustworthiness of the acquaintance pj , i.e. the subjective
trustworthiness stkj(ρ) of each peer pk to the acquaintance pj . Then, pi takes the
average of the subjective trustworthiness values obtained. This is the traditional
reputation concept [37]. However, every opinion collected may not be correct.
For example, since some peer pk has not communicated with pj for a long time,
the peer pk holds just obsolete subjective trustworthiness stij(ρ) to pj . We have to
exclude such faulty trustworthiness opinions.

It is not easy to recognize a faulty acquaintance which informs the peer pi of
faulty subjective trustworthiness. In our approach to excluding faulty trustworthi-
ness opinions, a peer pi makes a decision on which an acquaintance pj is faulty
based on its own subjective trustworthiness stij(ρ) depending on the confidence
of pi. If pi is not confident of its own opinion stij(ρ), pi obeys the opinions of
an acquaintance pk on the trustworthiness stkj of pj . Here, pi collects opinions
of other peers which know about the peer pj . If pi is the most confident of its
opinion, subjective trustworthiness stij(ρ), pi takes only its own trustworthiness
on the acquaintance pj . These two ways are at the extreme ends. There are some
intermediate ways to obtain the objective trustworthiness:

1. A peer pi collects the subjective trustworthiness stkj(ρ) from every acquain-
tance pk of pj .

2. pi collects the subjective trustworthiness stkj(ρ) from every acquaintance
pk of pi.

3. pi collects the subjective trustworthiness stkj(ρ) from every trustworthy ac-
quaintance pk, where stik(ρ) ≥ λi, i.e. an acquaintance pk which pi can
trust.

18

4. pi collects the subjective trustworthiness stkj(ρ) from every trustworthy ac-
quaintance pk, whose stkj(ρ) is similar to its own one stij(ρ).

In the first way, the peer pi takes the general public opinion on the trustwor-
thiness of pj . In the other ways, pi takes the specific opinions of the peers which
pi can trust. In this paper, we postulate that peers which a peer pi can trust are ac-
quaintances of pi. In the second way, pi takes opinions of all of its acquaintances.
In the third way, pi does not consider all the acquaintances but takes only the opin-
ions of the acquaintances which pi can trust. λi is a trustworthiness constant (0 ≤
τi ≤ 1). The peer pi thinks an acquaintance pkR to be trusted if stik(ρ) ≥ λi. Here,
even a trustworthy acquaintance pk shows a less trustworthiness opinion stkj(ρ).
If pi is confident of its own opinion stij(ρ), pi takes its own opinion stij(ρ) and
throws way the opinion of the acquaintance pk. In the last way, pi considers only
the trustworthy acquaintances whose opinions are similar to pi.

2.3.2 Computation of trustworthiness

The objective trustworthiness otij(ρ) of a requesting peer pi to an acquaintance pj
shows the general public opinion on the trustworthiness of pj , i.e. how much the
acquaintance pj is trusted by other peers. Let pi be a requesting peer and pj be its
acquaintance. The reputation [26, 29] of the acquaintance pj shows how much the
acquaintance pj is trusted by other peers. The reputation is influenced by faulty
acquaintances which hold obsolete service information. Let ρ be an access request
〈o,�, op〉.

The reputation [26, 29] of an acquaintance pj is obtained by the following
function:

OT0(pi, pj, ρ) :=

∑
{pk|pj∈V (pk,ρ)} stkj(ρ)

| {pk | pj ∈ V (pk, ρ)} | . (2.6)

Here, V (pk, ρ) is a set of acquaintances of a peer pk which supports with service
ρ.

In order to exclude the subjective trustworthiness of every faulty peer, each
requesting peer pi first only considers every acquaintance pk of both pj and pi to
calculate the objective trustworthiness otij(ρ).

OT1(pi, pj, ρ) :=

∑
pk∈V (pi,ρ)

stkj(ρ)

| V (pi, ρ) | . (2.7)

Even an acquaintance pk of a peer pi might be faulty, i.e. pk has obsolete ser-
vice information on a peer pj . In OT1, the trustworthiness of faulty acquaintances

19

are still considered. Next, less trustworthy acquaintances of the requesting peer pi
are not considered to calculate the objective trustworthiness otij(ρ).

stij

stik

stkj

pk

ph

pl

pjpi pf

Figure 2.5: Objective trustworthiness.

Each peer pi calculates the objective trustworthiness otij(ρ) by the following
function:

OT2(pi, pj, ρ) :=

∑
pk∈V (pi,ρ)∧stik(ρ)≥λi

stkj(ρ)

| {pk ∈ V (pi, ρ) | stik(ρ) ≥ λi} | . (2.8)

Hence, only the subjective trustworthiness stik(ρ) of the trustworthy acquaintance
pk is considered to calculate the objective trustworthiness, otij(ρ) where stik(ρ) ≥
λi for a trustworthiness constant λi (0 ≤ λi ≤ 1). This means, the requesting peer
pi perceives that pi can trust pk if stik(ρ) ≥ λi. The subjective trustworthiness
stkj(ρ) of a less trustworthy acquaintance pk to the peer pj is removed in the
function OT2. If an acquaintance pk is more trustworthy to the requesting peer pi,
pi more trusts the opinion of pk on pj .

Let us consider an example where there are six peers p0, p1, p2, p3, p4, and
p5. Here, suppose the V (p0, ρ) = {p1, p2, p3, p4} and V (p1, ρ) = {p0, p2, p3,
p4, p5} for an access request ρ. Suppose the subjective trustworthiness st01(ρ)
of the peer p0 is given as 0.7, st11(ρ) = 1.0, st02(ρ) = 0.7, st03(ρ) = 0.0, st04(ρ)
= 0.4, st21(ρ) = 0.8, st31(ρ) = 0.9, st41(ρ) = 0.6, and st51(ρ) = 0.5 as shown in
Figure 2.6. According to the traditional reputation concepts [26, 29], the objective

20

trustworthiness ot01(ρ) is given as OT0(p0, p1, ρ) = [st01(ρ) + st21(ρ) + st31(ρ) +
st41(ρ) + st51(ρ)] / 5 = 0.7. Next, only common acquaintances of p0 and p1, i.e.
p1, p2, p3, and p4 are considered in OT1, i.e. OT1(p0, p1, ρ) = [st01(ρ) + st21(ρ)
+ st31(ρ) + st41(ρ)] / 4 = 0.75. Here, st51(ρ) is not calculated since pi is not an
acquaintance of p0. In the function OT1, p3 is not trusted by p0, i.e. st03(ρ) =
0.0. st31(ρ) is not considered in OT2 p3 trusts p1 since p0 does not trust p3. In the
function OT2, only the subjective trustworthiness of a trustworthy acquaintance of
p0 is considered. The objective trustworthiness, ot01(ρ) is given by OT2(p0, p1, ρ)
= [st11(ρ) + st21(ρ) + st41(ρ)] / 3 = 0.8 for λi = 0.1.

p1p2

p3

p4

st21=0.8

st31=0.9

st41=0.6

ot01=0.4

p0

st02=0.7

st03=0.0

st04=0.4

p5

st51=0.5

st01=0.7

Figure 2.6: Objective trustworthiness ot01.

In our life, each person finally makes a decision based on its own opinion even
if other people show different opinions. A peer pi first removes acquaintances’
opinions quite different from its own opinion. Watanabe et al. discuss the ranking
factor with the deviation based on this rule. We introduce the following function
OT3 to obtain the objective trustworthiness otij(ρ) based on the idea:

Tikj(ρ) =

⎧⎪⎪⎨
⎪⎪⎩
√

stik(ρ) · stkj(ρ)
if
√

| st2ij(ρ)− stik(ρ) · stkj(ρ) | ≤ ϕi.

0 otherwise.

(2.9)

21

OT3(pi, pj, ρ) :=

∑
pk∈V (pi,ρ)

Tikj(ρ)

| {pk ∈ V (pi, ρ) | Tikj(ρ)
= 0} | . (2.10)

Here, ϕi is a constant (0 ≤ ϕi ≤ 1). In Figure 2.6, T011(ρ) = 0, T021(ρ) =√
ot02(ρ) · ot21(ρ) =

√
0.7 · 0.8 = 0.748, and T041(ρ) =

√
ot04(ρ) · ot41(ρ) =√

0.4 · 0.6 = 0.490.
Let ϕ0 be 0.5.

√| st02(ρ) · st21(ρ)− st01(ρ)2 | =
√| 0.56− 0.49 | =

√
0.07

≤ 0.5.
√| st04(ρ) · st41(ρ)− st01(ρ)2 | =

√
0.25 ≤ 0.5. The objective trust-

worthiness ot01(ρ) is OT3(p0, p1, ρ) = (
√

st01(ρ) · st11(ρ) +
√

st02(ρ) · st21(ρ) +√
st04(ρ) · st41(ρ)) / 3 = (

√
0.7 · 1.0 +

√
0.8 · 0.7 +

√
0.6 · 0.4) / 3 = 0.692. If ϕ0

= 0.3, OT3(p0, p1, ρ) =
√
st02(ρ) · st01(ρ) =

√
0.8 · 0.7 = 0.75. Thus, only the ac-

quaintance pk where
√
stik(ρ) · stkj(ρ) is closer to the subjective trustworthiness

stij(ρ) is taken into account if ϕ0 is getting smaller. The constant ϕ0 means that
p0 takes only its own opinion to p1.

An objective trustworthiness function OT (pi, pj, ρ) means some of OTh(pi,
pj , ρ) (h = 0, 1, 2, 3). OTh is higher than OTk if h > k. The higher OTh is, the
more the objective trustworthiness otij(ρ) of an acquaintance pj depends on the
requesting peer pi.

We discuss the trustworthiness stij(ρ) and otij(ρ) with respect to a specific
service type ρ. An acquaintance peer pj supports multiple types pj1, ..., pjlj . We
define the aggregate trustworthiness stij and otij as follows.

stij =
∑

k=1,...,lj

stij(ρjk). (2.11)

otij =
∑

k=1,...,lj

otij(ρjk). (2.12)

2.4 Confidence on subjective trustworthiness

As discussed in the preceding sections, a peer pi obtains the subjective trustwor-
thiness stij(ρ) and objective trustworthiness otij(ρ) from the trustworthiness opin-
ions of other peers on a peer pj . Then, the peer pi has to decide on how much the
peer pi can trust the acquaintance pj . It depends on how much a peer pi is confi-
dent of its own opinion stij(ρ) on an acquaintance pj . As discussed here, a most
confident peer pi takes the subjective trustworthiness stij(ρ). On the other hand,
a least confident peer pi takes the objective trustworthiness otij(ρ) decided by the

22

lowest level function OT0. Let cfij(ρ) show the confidence of a peer pi to an ac-
quaintance pj with respect to a service type ρ (0 ≤ cfij(ρ) ≤ 1). We discuss how
to compute the confidence cfij(ρ). There are two types of confidence, subjective
confidence sfij(ρ) and objective confidence of ofij(ρ) as discussed in the trust-
worthiness. First, we consider the subjective confidence sfij(ρ) which a peer pi
obtains through issuing a service request ρ to an acquaintance. Suppose a peer pi
issues an access request ρ to an acquaintance pj and receives a reply r(ρ) from
pj . Then, pi obtains the subjective trustworthiness stij(ρ) as discussed. If pi had
not communicated with the acquaintance pj for a long time, pi is less confident
of its own stij(ρ) since the types and quality of service supported by pj might be
changed. The confidence also depends on how frequently pi has communicated
with pj . Even if pi often communicates with pj , pi might not be confident. For
example, pj may issue messages to pi like DoS attacks [30]. The acquaintance pj
might have sent replies with different satisfiability values. In this paper, if the peer
pi receives replies from the acquaintance pj whose satisfiability values are similar,
pi is more confident. Thus, we consider the following parameters to compute the
subjective confidence sfij(ρ):

1. lij(ρ) = communication time, i.e. how long a peer pi has communicated
with an acquaintance pj with respect to a service request ρ [sec].

2. fij(ρ) = communication frequently, i.e. how frequently pi has communi-
cated with pj with respect to ρ [req/sec].

3. vij(ρ) = variance of satisfiability values of replies r(ρ) which pi has received
from pj .

The subjective confidence scij(ρ) is given in a tuple 〈lij(ρ), fij(ρ), vij(ρ)〉. Let
c1 = 〈c11, c12, c13〉 and c2 = 〈c21, c22, c23〉 be subjective confidence values. Here,
c1 ≥ c2 iff c11 ≥ c21, c12 ≥ c22, and c13 ≥ c23.

Next, a peer pi can obtain the confidence by comparing its opinion with other
peers. If a peer pi knows a more number of peers have similar opinions, On the
other hand, a peer pi can be confident if another peer pj trusts pi. The objective
confidence ofij(ρ) of a peer pi to an acquaintance pj with respect to a service
type ρ is obtained in terms of trustworthiness opinions of other peers. A person
can be confident if more people think the person to be trustworthy. Thus, the
more number of peers trust a peer pi, the more the peer is confident. We take the
following parameter: τij(ρ) = number of acquaintances which trust a peer pi, i.e.
{ pk | pk ∈ V(pi, ρ) and stkj(ρ) ≥ λi}. The confidence cfij(ρ) is given in a tuple

23

〈lij(ρ), fij(ρ), vij(ρ), τij(ρ)〉. Here, let ck be a tuple 〈ck1, ck2, ck3, ck4〉. For a peer
of tuple c1 and c2, c1 ≥ c2 iff c11 ≥ c21, c12 ≥ c22, c13 ≥ c23, and c14 ≥ c24.

24

Chapter 3

A Basic Agreement Protocol

3.1 Precedent relations

At each round, a peer pi takes a value vti (= LDi (vt−1
1 , . . . , vt−1

n)) at round t. The
value vti may depend on the previous value vt−1

i . We define the existentially (E-)
precedent relation →E

i (⊆ D2
i) and preferentially (P-) precedent relation →P

i (⊆
D2

i) on the domain Di to show with which value a peer pi can take after a current
value at each round.
[Definition] For every pair of values v1 and v2 in a domain Di of a peer pi,

1. v1 E-precedes v2 in the peer pi (v1 →E
i v2) if and only if (iff) the peer pi is

allowed to take v1 after v2.

2. v1 P-precedes v2 in pi (v1 →P
i v2) iff pi prefers v1 to v2.

3. v1 →E
i v2 and v1 →P

i v2 if v1 →E
i v3 →E

i v2 and v1 →P
i v3 →P

i v2 for
some value v3, respectively.

In the commitment protocols [47, 54], a peer which sends commit may abort
if the coordinator peer indicates abort. However, a peer which notifies other pro-
cesses of abort unilaterally aborts, i.e. cannot take commit. That is, a peer can
change commit with abort but cannot change abort with any value, commit →E

i

abort but abort
→E
i commit. In another example of distributed auction system

[47], each person cannot show a cheaper value v2 than a previous value v1. Here,
v1 →E

i v2 where v2 > v1.
Suppose a peer pi can take a pair of values v1 and v2 after taking the value

v in the E-dominant relation →E
i , i.e. v →E

i v1 and v →E
i v2. Suppose neither

25

v1 →E
i v2 nor v2 →E

i v1, i.e. the peer pi is allowed to take any value of v1 and
v2 after taking the value v. Here, the peer pi has to take one of the values v1 and
v3. For example, if a peer pi prefers a value v1 to another value v2 (v2 →P

i v1), the
peer pi would like to take the value v1. It is noted that the peer pi may take the
value v2 even if the value v1 is more preferable than the value v2.

The precedent relations →E
i and →P

i with the domain Di are assumed to be a
priori specified when each peer pi is initiated. In a homogeneous system, every
peer pi has the same relations →E

i and →P
i on the same domain Di. In a hetero-

geneous system, some pair of peers pi and pj have different relations →E
i
= →E

j

or →P
i
= →P

j on different domains, Di
= Dj .
There are the following relations between a pair of values v1 and v2 in the

domain Di of a peer pi:

1. v1 is E-equivalent with v2 in pi (v1 ≡E
i v2) iff v1 →E

i v2 and v2 →E
i v1.

2. v2 is more E-significant than v1 in pi (v1 ≺E
i v2) iff v1 →E

i v2 but v2
→E
i v1.

3. v1 E-dominates v2 in pi (v1 �E
i v2) iff v1 ≺E

i v2 or v1 ≡E
i v2.

4. v1 is E-incomparable with v2 in pi (v1 |Ei v2) iff neither v1 →E
i v2 nor

v2 →E
i v1.

5. v1 is P-equivalent with v2 in pi (v1 ≡P
i v2) iff v1 →P

i v2 and v2 →P
i v1.

6. v1 is more P-significant than v2 in pi (v2 ≺P
i v1) iff v1 →P

i v2 but v2
→P
i v1.

7. v1 P-dominates v2 in pi (v2 �P
i v1) iff v2 ≺P

i v1 and v2 ≡P
i v1.

8. v1 and v2 are P-incomparable in pi (v1 |Pi v2) iff neither v1 →P
i v2 nor

v2 →P
i v1.

A value v1 is referred to as maximal and minimal iff there is no value v2 such
that v1 →E

i v2 and v2 →E
i v1 in the domain Di, respectively. For example, abort is

maximal and commit is minimal in the commitment protocol. If a peer p i takes a
maximal value v in the domain Di, the peer pi cannot take any new value. On the
other hand, a peer pi can take a value after taking a minimal value in the domain
Di. A value v1 is referred to as top iff v2 →E

i v1 for every value v2 in Di. A value
v1 is referred to as bottom iff v1 →E

i v2 for every value v2 in Di. Let Corni(x)
be a set of values which a peer pi can take after taking a value x in a domain Di,
Corni(x) = { y | x →E

i y } ⊆ Di. If a value x is maximal, Corni(x) = φ. If there

26

are multiple values which a peer pi can take after a value x, i.e. |Corni(x)| ≥ 2,
the value x is referred to as branchable in the domain Di.

A least upper bound (lub) of values v1 and v2 (v1 �E
i v2) is a value v3 in the

domain Di such that v1 →E
i v3, v2 →E

i v3, and there is no value v4 such that
v1 →E

i v4 →E
i v3 and v2 →E

i v4 →E
i v3 in a peer pi. For example a peer pi

takes a value vi and another peer pj takes a value vj at round t. If →E
i = →E

j ,
the peer pi and pj can take vi �E

i vj to make an agreement. A greatest lower
bound (glb) of values v1 and v2 (v1 �E

i v2) is a value v3 in the domain Di such
that v3 →E

i v1, v3 →E
i v2, and there is no value v4 such that v3 →E

i v4 →E
i v1 and

v3 →E
i v4 →E

i v2. A least upper bound (lub) �P
i and greatest lower bound (glb)

�P
i are defined for the P-dominant relation →P

i in the same way as �E
i and �E

i .

3.1.1 E-precedent relation

A system S is composed of n (≥ 1) peer processes p1, . . . , pn. A domain Di

of a process pi is a set of possible values which the process pi can take. Each
process pi initially takes a value v0i in the domain Di and notifies the other pro-
cesses of the value v0i . A process pi receives a value v0j from every other pro-
cess pj (j = 1, . . . , n). The process pi takes another value v1i from a tuple
〈v01, . . . , v0n〉. This is the first round. Then, the process pi notifies the other pro-
cesses of the value v1i . Thus, at the tth round, the process pi collects a tuple vt−1

= 〈vt−1
1 , . . . , vt−1

i , . . . , vt−1
n 〉 where pi takes a value vt−1

i and receives a value vt−1
j

from each other process pj (j
= i). If vt−1 satisfies the agreement condition ACi,
the process pi obtains one value v from vt−1 as an agreement value and terminates.
Otherwise, pi takes a value vti in the domain Di and notifies the other processes of
vti . Here, pi changes the opinion from the value vt−1

i to vti . Here, v0i , . . . , v
t−1
i are

referred to as previous values and vti is a current value.
In the commitment protocols [47, 54], a process which notifies commit may

abort if the coordinator process indicates abort to the process after receiving the
values from the processes. Here, a process which notifies abort cannot take com-
mit. Each process pi can take a value vti after taking a value vt−1

i in the domain Di

at round t if pi can change vt−1
i to vti . Here, pi changes the opinion from vt−1

i to
vti . If pi cannot take any value from vt−1

i , pi still takes the value vt−1
i as the current

value vti or backs to the previous value vt−2
i and tries to take another value from

vt−2
i .

[Definition] A value v1 is referred to as existentially (E) precede a value v2 with
respect to a process pi (v1 →E

i v2) if and only if (iff) the process pi can take v1
after taking v2 in the domain Di (→E

i ⊆ D2
i).

27

We assume the relation →E
i to be transitive. A value v1 is E-equivalent with

a value v2 in a process pi (v1 ≡E
i v2) iff v1 →E

i v2 and v2 →E
i v1. A value v1 is

E-uncomparable with a value v2 in a process pi (v1 |Ei v2) iff neither v1 →E
i v2

nor v2 →E
i v1. A value v1 E-dominates a value v2 in pi (v1 ≺E

i v2) iff v1 →E
i v2

but v2
→E
i v1. v1 �E

i v2 iff v1 ≺E
i v2 or v1 ≡E

i v2. In the commitment protocol,
commit →E

i abort but abort
→E
i commit for every process pi as presented here.

Hence, commit ≺E
i abort.

For every pair of values v1 and v2, v1 E-precedes v2 (v1 →E v2), v1 is E-
equivalent with v2 (v1 ≡E v2), v2 is more E-significant than v1 (v1 ≺E v2), v2
E-dominates v1 (v1 �E v2), and v1 is E-uncomparable with v2 (v1 |E v2) iff
v1 →E

i v2, v1 ≡E
i v2, v1 ≺E

i v2, v1 �E
i v2, and v1 |Ei v2 for every process pi,

respectively.
A process pi can take a value v2 after taking another value v1 if v1 →E

i v2.
Here, suppose that the process pi had taken v2 before v1. Question is whether or
not pi can take again a value which pi has previously taken.
[Definition] A value v1 acyclically E-precedes (AE-precedes) a value v2 in a pro-
cess pi (v1 ⇒E

i v2) iff pi can take v2 after taking v1 and pi had previously not taken
v2.

A least upper bound (lub) of values v1 and v2 (v1 �E
i v2) is a value v3 in the

domain Di such that v1 →E
i v3, v2 →E

i v3, and there is no value v4 such that
v1 →E

i v4 →E
i v3 and v2 →E

i v4 →E
i v3. Suppose there are a pair of processes

p1 and p2 notifying one another of values v1 and v2, respectively. Suppose the
processes p1 and p2 have the same E-precedent relation, →E

1 = →E
2 = →E on the

same domain D, D1 = D2 = D. Here, �E
1 = �E

2 = �E and �E
1 = �E

2 = �E . If
there exists an lub v3 = v1 �E v2, both p1 and p2 can take v3 after taking v1 and
v2, respectively. A greatest lower bound (glb) of values v1 and v2 (v1 �E

i v2) is
a value v3 in Di such that v3 →E

i v1, v3 →E
i v2, and there is no value v4 such

that v3 →E
i v4 →E

i v1 and v3 →E
i v4 →E

i v2. The processes p1 and p2 can also
take the glb v4 = v1�E v2 as an agreement value if the processes can take previous
values again. In this paper, there exist a pair of special values, bottom value ⊥E

i

and top value �E
i where ⊥E

i →E
i v and v →E

i �E
i for every value v in Di. This

means that a process pi can take any value in Di after taking the bottom ⊥E
i . On

the other hand, pi taking the top �E
i cannot change the value. In the commitment

protocol [42, 43, 44], each process pi has a binary domain Di = {abort, commit}
where commit →E

i abort. Here, abort is the top �E
i and commit is the bottom

⊥E
i . The value abort E-dominates commit (commit ≺E

i abort).
[Definition] Let →E

i and →E
j be E-precedent relations of processes pi and pj ,

respectively. A pair of precedent relations →E
i and →E

j are existentially (E) con-

28

sistent (→E
i
∼=E →E

j) iff for every pair of values v1 and v2 in Di ∩ Dj , v1 →E
i v2

iff v1 →E
j v2.

A pair of E-precedent relations →E
i and →E

j are E-inconsistent (→i
∼=E →j)
iff →E

i and →E
j are not consistent. Let us consider a pair of processes p1 and p2.

Here, D1 = { a, b, c } and D2 = { a, b, d, e }. In the process p1, a →E
1 b and a →E

1

c. In the process p2, a →E
2 b →E

2 d and b →E
2 e. Here, →E

1
= →E
2 but →E

1 and
→E

2 are E-consistent (→E
1
∼= →E

2) since D1 ∩ D2 = { a, b } and a →E
1 b and a

→E
2 b. Another process p3 has a domain D3 = { a, b, e } where b →E

3 a. Here, the
E-precedent relation →E

3 is not E-consistent with →E
1 (→E

3
∼= →E
1) since a →E

1 b
but b →E

3 a for D1 ∩ D3 = { a, b }.
In the E-precedent relation →E

i (⊆ D2
i), a process pi makes a decision on a

value v2 which pi notifies to the other processes depending on a value v1 most
recently taken. That is, pi takes a value v2 where v1 →E

i v2. Let NextEi (v1) be
{v2 | v1 →E

i v2} of values which pi can take next from a value v1. For example,
NextEi (commit) = {commit, abort} and NextEi (abort) = {abort}.

3.1.2 P-precedent relation

Suppose a process pi can take a pair of values v1 and v2 after taking a value v3 in
the E-dominant relation →E

i , i.e. v3 →E
i v1 and v3 →E

i v2. Here, the process pi
has to take one of the values v1 and v3. If pi prefers v1 to v2 (v2 →P

i v1), pi can first
take v1. A partially ordered relation →P

i ⊆ D2
i is a preferentially (P) precedent

relation on the domain Di.
[Definition] A value v1 P-precedes a value v2 in a process pi (v1 →P

i v2) iff pi
prefers v1 to v2.

A value v1 is P-equivalent with a value v2 in a process pi (v1 ≡P
i v2) iff

v1 →P
i v2 and v2 →P

i v1. v1 is more P-significant than v2 in pi (v2 ≺P
i v1) iff

v1 →P
i v2 but v2
→P

i v1. v1 P-dominates v2 in pi (v2 �P
i v1) iff v2 ≺P

i v1 and
v2 ≡P

i v1. A pair of values v1 and v2 are P-uncomparable in pi (v1 |Pi v2) iff
neither v1 →P

i v2 nor v2 →P
i v1. In addition, v1 →P v2, v1 ≡P v2, v1 ≺P v2,

v1 �P v2, and v1 |E v2 iff v1 →P
i v2, v1 ≡P

i v2, v1 ≺P
i v2, v1 �P

i v2, and v1 |Ei v2
for every process pi, respectively.

The least upper bound �P
i and greatest lower bound �P

i are defined for the
P-dominant relation →P

i in the same way as �E
i and �E

i . There are special values,
top �P

i and bottom ⊥P
i with respect to the P-precedent relation →P

i in the same
way as the E-precedent relation →E

i . We assume the P-precedent relation →P
i is

transitive.

29

3.2 Coordination procedure

In fully distributed peer-to-peer (P2P) applications, there is no centralized coordi-
nator and every peer makes a decision by itself through communicating with the
other peers. In addition, it is a common function of most P2P applications for
multiple peers p1, . . . , pn to make an agreement, for example, to fix a date for a
meeting of members in a society. A domain Di of a peer pi is a set of possible
values which the peer pi can take in an agreement procedure. We assume every
pair of peers can reliably communicate with one another in the underlying net-
work. We also assume that every peer is reliable, i.e. every peer is not faulty in
this paper.

Figure 3.1 shows the overview of the coordination protocol to make an agree-
ment. Each peer pi initially takes a value v0i in the domain Di and sends the value
v0i to the other processes p1, . . . , pn. The peer pi in turn receives values v01, . . . , v

0
n

from the other peers p1, . . . , pn, respectively. The agreement condition ACi is
checked for the tuple 〈v01, . . . , v0i , . . . , v0n〉 of the received values. Each peer pi
checks if the tuple 〈v01, . . . , v0n〉 satisfies the agreement condition ACi. There are
agree, all, majority, weighted majority, and consonance types of agreement con-
ditions [44, 45]. For example, the all-condition ACi is satisfied if every peer pi
takes the same value v, i.e. ACi(v01 , . . . , v

0
n) is true. Every peer pi is assumed to

have the same agreement condition ACi = AC. If the agreement condition ACi

is not satisfied, a peer pi takes another value v1i in the domain Di, which is ob-
tained by performing a local decision function LDi on a tuple 〈v01, . . . , v0n〉 of the
values, i.e. v1i = LDi(v01 , . . . , v

0
n). This is the first round. Each peer pi sends the

value v1i to the other peers and receives values from the other peers. Thus, at each
round t, each peer pi collects a tuple 〈vt−1

1 , . . . , vt−1
n 〉 of values received from the

other peers. If the tuple 〈vt−1
1 , . . . , vt−1

i , . . . , vt−1
n 〉 satisfies the agreement condi-

tion ACi, the peer pi obtains one agreement value v = GDi(v
t−1
1 , . . . , vt−1

n) by
performing a global decision function GDi and then terminates. For example, if
there is such a value v that more than half of the values are the same in the tuple,
the majority agreement condition ACi is satisfied and then each peer pi takes the
value v as the agreement value. Every peer pi is assumed to have the same global
decision function GDi = GD.

If the agreement condition ACi is not satisfied, a peer pi takes a value vti =
LDi(v

t−1
1 , . . . , vt−1

n) which may be different from the previous value vt−1
i . Then,

the peer pi notifies the other peers of the selected value vti . Thus, the peer pi
changes the opinion from the value vt−1

i to the value vti at each round t. Here,
the values v0i , v

1
i , . . . , v

t−1
i which the peer pi has so far taken are referred to as

30

previous values at round t. The value vti is a current value cti at round t.

: agreement condition. : local decision function.

: global decision function. : round.

peers.

every other peer

Figure 3.1: Coordination protocol.

3.2.1 Agreement conditions

A predicate ACi: D1 × · · · × Dn → {true, false} is the agreement condition
of a process pi on a tuple of values v1, . . . , vn. For a tuple of values 〈v1, . . . , vn〉,
ACi(v1, . . . , vn) = true if the processes p1, . . . , pn can make an agreement. We
assume every process pi has the same agreement condition AC in this paper. At
each round t, each prcess pi holds a tuple 〈vt1, . . . , vtn〉 of values notified by the
processes p1, . . . , pn, respectively. Here, if ACi (vt1, . . . , v

t
n) is true, the coordi-

nation protocol terminates. There are following types of agreement conditions:

1. All condition: ACi (vt1, . . . , v
t
n) = true if vt1 = . . . = vtn.

2. Majority condition: ACi (vt1, . . . , v
t
n) = true if | { pj | vtj = v } | > n/2.

31

3. Maximal condition: ACi (vt1, . . . , v
t
n) = true if v = vt1 �i . . . �i v

t
n in Di.

4. Minimal condition: ACi (vt1, . . . , v
t
n) = true if v = vti �i . . . �i v

t
n in Di.

5. Consonance condition: ACi (vt1, . . . , v
t
n) = true if vtj
= vtk for every pair of

different processes pj and pk.

The conditions 3 and 4 are only used in homogeneous systems.

3.2.2 Global decision function

A function GDi: D1×· · ·×Dn →Di is a global decision function of a process pi
which gives a value vi which pi takes as the global decision. GDi depends on the
agreement condition ACi. For example, GDi (vt1, . . . , v

t
n) takes a majority value

in a set {vt1, . . . , vtn} if the majority agreement condition ACi (vt1, . . . , v
t
n) is true.

There are the following types of the agreement conditions:

1. All condition: v = GDi (vt1, . . . , v
t
n) if vt1 = . . . = vtn = v.

2. Majority condition: v = GDi (vt1, . . . , v
t
n) if | {vtj | vtj = v} | > n/2.

3. Maximal condition: v = GDi (vt1, . . . , v
t
n) if v = vt1 �i . . . �i v

t
n.

4. Minimal condition: v = GDi (vt1, . . . , v
t
n) if v = vt1 �i . . . �i v

t
n.

5. Consonance condition: vti = GDi (vt1, . . . , v
t
n) if vtj
= vtk for every pair of

different processes pj and pk.

3.2.3 Local decision function

A function LDi: D1 × · · · × Dn → Di is a local decision function of a process
pi which gives a value vt+1

i in the domain Di from a tuple 〈vt1, . . . , vtn〉. Here, a
value vti has to E-precede a value vt+1

i (vti →E
i vt+1

i). If there are multiple values
which E-precedes vti , pi takes one of them. Nexti(vti) is a set {v | vti →E

i v in Di}
of values which E-precede a value v. One strategy to obtain a value which the
process pi to take is that pi takes the least preferable value in the set Nexti(vti).
That is, �P

i,v∈Ei
v is taken by pi. In another strategy, pi takes the most preferable

value, i.e. �P
i,v∈Ei

v.
First, suppose that each process pi receives a tuple of values 〈vt1, . . . , vtn〉 at

round t, where each value vtj is received from a process pj (j = 1, . . . , n, j
= i) and
vti is a value which pi takes. A process pi takes one value vt+1

i such that vti →i

vt+1
i , i.e. vt+1

i = LDi(vt1, . . . , v
t
n) if the agreement condition ACi(vt1, . . . , v

t
n) is not

satisfied. The process pi finds a value vt+1
i for a tuple 〈vt1, . . . , vti . . . , vti+1〉 by the

following function LDi:

32

LDi(vt1, . . . , v
t
n)

{
/* forwarding */
v = Fsrchi(vt1, . . . , v

t
n);

if v
= NULL, return (v);
else

/* backwarding */
return (Bsrchi (vt1, . . . , v

t
n));

}

Fsrchi(vt1, . . . , v
t
n)

1. if Nexti(v
t
i) = ø, return (NULL);

2. take a value v in Nexti (vti) such that | { vtj | v →ij vtj for every pj } |
(≥ n/2) is the largest;
if v exists, return (v);

3. take a value v in Nexti (vti) such that | { vtj | v →i v
t
j for every pj } | (
= 0)

is the largest;
If v exists, return (v);

4. take a value v in Nexti (vti) such that | Corni(v) | is the largest;
If v exists, return (v).

The forwarding procedure Fsrchi(vt1, . . . , v
t
n) takes a value vt+1

i preceding the
current value vti (vti →i v

t+1
i). This is a forwarding strategy since we are always

going up to upper bounds of current values in the lattice Li = 〈 Di,→i,�i,�i 〉 of
the process pi.

If a process pi could not find a value, i.e. Fsrchi(vt1, . . . , v
t
n) = NULL in the

forwarding strategy, pi takes a backward strategy, i.e. backs to the previous value.
Suppose a process pi takes a value vti and another process pj takes a value vtj at
round t. Suppose the process pi could not find a least upper bound(lub) vt

i �i v
t
j .

Here, pi finds the greatest lower bound(glb) vti �i v
t
j . If a value v = vti �i v

t
j is

found in the domain Di, pi takes the value v, i.e. backwards to the value v in the
lattice Li of the process pi [Figure 2]. Then, the forwarding strategy is adopted as
follows:

Bsrchi(vt1, . . . , v
t
n)

1. if there is a value v = vt1 �i, . . . ,�i v
t
n in Di,

{

33

v = Fsrchi(vt1, . . . , v
t
i−1, v, v

t
i+1, . . . , v

t
n);

if v
= NULL, return (v);
}
else {

v = Bsrchi(vt1, . . . , v
t
i−1, v, v

t
i+1, . . . , v

t
n);

if v
= NULL, return (v);
else return (vt1 �i · · · �i v

t
n);

}
2. Otherwise, v = NULL,

{
find a value v such that v →E

i vti and | {pj | v →ij v
t
j} | is the largest;

v = Fsrchi(vt1, . . . , v
t
i−1, v, v

t
i+1, . . . , v

t
n);

if v
= NULL, return (v);
else {

v = Bsrchi(vt1, . . . , v
t
i−1, v, v

t
i+1, . . . , v

t
n);

if v
= NULL, return (v);
else return (vt1 �i · · · �i v

t
n);

}
}

On receipt of a value vtj from another process pj , a process pi stores a tuple
〈vt−1

j , vtj〉 showing a precedent relation vt−1
j →ij vtj in the local database DBi.

Here, DBij shows a part of the local database DBi where a precedent relation →ij

on another process pj is stored (j
= i). DBii includes the precedent relation →i

of the process pi. DBi = DBi1 ∪ · · · ∪ DBin. The size of the local database DBi

is limited. Every precedent relation →ij obtained from each process pj cannot
be stored in DBij . The process pi has to forget some tuples in DBij . We take a
least-recently-used (LRU) replacement strategy where a tuple least recently used
is withdrawn from DBij if DBij is full. Then, a new tuple on →ij is stored.

3.2.4 Initial value

A process pi initially takes a value v0i and then sends the value v0i to all the pro-
cesses p1, . . . , pn. Question is which value the process pi initially takes in the
domain Di. Each process pi has a value v1 which pi would like to take and pre-
cedes any value v2 (v1 →i v2) which pi would not like to take. The value v1

34

backtrack

Figure 3.2: Lub and Glb..

is referred to as maximal target value. There is another value v1 which the pro-
cess pi would like to take but is preceded by any value which would not like to
take. The value v1 is referred to as minimal target value. There are two strategies,
minimal-start and maximal-start ones. In the minimal start strategy, a process p i

initially takes a minimal target value v in Di. Then, the process pi upgrades val-
ues. In the maximal strategy, a process pi initially takes a maximal target value v.
The process pi insists of taking the maximal value v. This is the most aggressive
strategy.

Initially, every process pi does not know anything about the precedent relation
→j of another process pj (j
= i). In the coordination protocol, the processes
exchange values with each other at each round. If a process pi receives a value
v2 after taking another value v1 from another process pj , the process pi perceives
that the value v1 precedes v2 (v1 →j v2) in the process pj . Thus, the process
pi learns the precedent relation →j of another process pj through communicating
with the process pj . The precedent relations of the other processes which a process
pi obtains through communication are stored in the local database DBi of the
process pi. Let →ij be a part of the precedent relation →j which a process pi

35

knows, →ij ⊆ →j . That is, if a process pi receives a value v2 after receiving a
value v1 from another process pj , a precedent relation “v1 →ij v2” holds in the
process pi. The least upper bound v1 �ij v2 and the greatest lower bound v1 �ij v2
are defined for the precedent relation →ij in the process pi.

3.2.5 Meta coordination

Suppose a process pi takes a value x and then y and another process pj takes y
and then x. The process pi takes x to make an agreement with pj by using the
backward strategy. However, pj takes y. The processes pi and pj can take x or
y as an agreement value but connot take the same value. This is a kind of live-
lock. In order to resolve the difficulties, we introduce following meta coordination
commands:

1. freeze: a process pi does not change the current value vt−1
i at the succeeding

round t.
2. back: a process pi takes a previous value vui which pi has taken before.

Each process pi takes one of the meta action, freeze or back. If pi is cooper-
ative, pi does not change the opinion by freeze and wait for change of values of
other peers. If pi is selfish, pi just takes a value without issuing freeze and back.
Thus, processes are classified with respect to how each peer cares other peers.

3.2.6 Types of coordination strategies

At each round ti, a peer pi shows a value vtii to other peers. Here, each local history
H ti

i is given a sequence 〈v0i , v1i , . . . , vti−1
i 〉. There are the following strategies for

each peer pi to take a value vtii at each round ti:

1. Forward (f) strategy: the peer pi takes a value vtii which is preceded by
values in the local history H ti

i = 〈v0i , . . . , vti−1
i 〉.

2. Backward (b) strategy: the peer pi backs to the previous branchable round u
(< ti) and takes a new value v from the local history Hu

i = 〈v0i , . . . , vu−1
i 〉.

3. Mining (m) strategy: the peer pi finds a recoverable cut ct = [vu1
1 , . . . , vun

n]
in the local history H t

i and proposes the other pees to make an agreement on
the cut ct. If every peer agrees on the cut ct, the peer pi takes an agreement
value on the values vu1

1 , . . . , vun
n and terminates.

4. Observation (o) strategy: the peer pi takes the same value vtii as the previous
one vti−1

i at round ti.

36

Each peer pi autonomously takes one of the forward, backward, mining, and
observation strategies at each round ti as shown in Figure 3.8. Each round is com-
posed of two phases, strategy decision (SD) and value exchange (V E) phases.
In the strategy decision phase, every peer makes a decision on the coordination
strategy. Then, each peer exchanges values in the value exchange (V E) phase
according to the strategy.

We classify peers into aggressive, passive, cooperative, and fancy types de-
pending on which coordination strategy each peer takes at each round. An ag-
gressive peer pi more frequently takes the forward strategy. That is, the peer pi is
trying to take a new value based on the precedent relations. Passive and cooper-
ative peers do not prefer the forward strategy. A peer carefully observes what the
other peers have so far done. A peer pi first takes the mining strategy to back to
the previous round. Unless successful, the passive and cooperative peers take the
forward and backward strategies, respectively. A fancy peer arbitrarily takes one
of the strategies.

: agreement condition.

miningforward obsevation

true

agreement

backward

strategy decision
SD

VE

Figure 3.3: Coordination procedure of a peer.

37

3.2.7 Inconsistent strategies

Each peer pi first proposes a strategy pstii and informs the other peers of the pro-
posed strategy pstii at each round ti with a local history H ti

i = 〈v0i , . . . , vti−1
i 〉.

At each round, different peers may propose different coordination strategies.
A pair of proposed strategies pstii and ps

tj
j are consistent with one another iff a pair

of different peers pi and pj can take the strategies pstii and ps
tj
j , respectively. For

example, suppose a pair of peers pi and pj propose the forward strategies 〈f, vi〉
and 〈f, vj〉, respectively. Since a pair of the peers pi and pj can take the values vi
and vj , respectively, the forward strategies 〈f, vi〉 and 〈f, vj〉 are consistent with
one another.

Suppose a peer pi proposes the mining strategy 〈m, rci = [u1, . . . , un]〉 but
another peer pj takes a different strategy, say the forward strategy 〈f, vi〉. In or-
der for the peer pi to take the mining strategy, every other peer has to agree on
the mining strategy. Thus, the mining strategy is inconsistent with every other
strategy. Hence, every peer has to make a decision on whether or not the mining
strategy is taken on receipt of the proposed mining strategy.

Next, suppose a peer pi takes a forward strategy 〈f, vi〉 and another peer pj
takes a backward strategy 〈b, uj〉. If pj compensates previous values in the local
history H

tj
j by backing to the previous round uj , H

tj
j = 〈v0j , . . . , vu−1

j , . . . , vtj−1
j 〉

stored in every peer pi is also reduced to the prefix Hu
j = 〈v0i , . . . , vu−1

i 〉 (u < tj).
If the value vi to be taken by pi depends on a value vsj (s ≥ u) to be compensated,
pi cannot take the value vi after pj takes the backward strategy 〈b, uj〉. Thus, the
forward strategy 〈f, vi〉 and the backward strategy 〈b, uj〉 are inconsistent. On the
other hand, if vi does not depend on any value to be compensated, the peers pi and
pj can take the forward and backward strategies independently of one another.
Thus, the strategies 〈f, vi〉 and 〈b, uj〉 is conditionally consistent.

Next, suppose a pair of peers pi and pj propose the backward strategies 〈b, ui〉
and 〈b, uj〉, respectively. The values 〈vui

i , . . . , vti−1
i 〉 and 〈vuj

j , . . . , v
tj−1
j 〉 are com-

pensated and the local histories Hui
i = 〈v0i , . . . , vui−1

i 〉 and H
uj

j = 〈v0j , . . . , vuj−1
j 〉

are then obtained in the peers pi and pj , respectively. If a cut
[
ui, uj

]
is consis-

tent, i.e. for every value vsi (s ≥ ui) in H ti
i , there is no value vj in H

uj

j such that

vsi → vj and for every value vsj (s ≥ uj) in H
tj
j , there is no value vi in Hui

i such
that vsj → vi, the peers pi and pj can back to the rounds ui and uj , respectively.
Hence, the backward strategies 〈b, ui〉 and 〈b, uj〉 are consistent. Otherwise, the
backward strategies are inconsistent. Thus, a pair of the backward strategies are
conditionally inconsistent.

38

Table 3.1: Consistency among strategies

p

p

rc

tu

backward

u

u

tj

i i i

j

j

j

i

ui
,

,,

Figure 3.4: Mining and backward strategies.

Table 1 summaries the consistency among the coordination strategies. The
conditional consistency among the strategies pstii and ps

tj
j means that pstii and ps

tj
j

are consistent if some conditions hold. Table 2 shows the conditions. For example,
a pair of peers pi and pj propose the applicable mining strategies 〈m, [u1, . . . , un]〉
and 〈m, [s1, . . . , sn]〉, respectively. If

[
u1, . . . , un

]
=
[
s1, . . . , sn

]
, the mining

strategies proposed by pi and pj are consistent. Next, suppose a peer pj pro-
poses the mining strategy 〈m, rcj = [u1, . . . , un]〉. Suppose the peer pi proposes
a backward strategy 〈b, u′

i〉. Here, suppose u′
i ≤ ui as shown in Figure 3.4. Here,

even if the peer pi backs to the round v′i the peer pi can take the mining strategy
〈m, rcj〉. Next, suppose pi proposes a backward strategy 〈b, u′′

i 〉 where ui < u′′
i .

If the peer pi back to the round u′′
i , pi cannot take the mining strategy as shown

in Figure 3.4. Here, the mining strategy 〈m, [u1, . . . , un]〉 is inconsistent with the
backward strategy 〈b, u′′

i 〉.

3.2.8 Resolution among different strategies

At each round, different peers may take different coordination strategies since the
peers are autonomous. Suppose one peer pi takes the mining (m) strategy but
another peer pj takes a different strategy from the mining one. In order for the

39

i
p

j
p f

f

b

m

b m

: conditionally consistent.: consistent. : inconsistent.

Table 1. Consistency among strategies.

peer pi to take the mining strategy, every other peer agrees on the mining one.
Hence, every peer has to make a decision on whether or not the mining strategy
is taken. Each peer pi takes the mining strategy only if every peer could take the
mining strategy. Next, suppose a peer pi takes a forward strategy and another
peer pj takes a backward strategy. If pj compensates previous values in the local
history H

tj
j by backing to the previous round u, the local history H

tj
j in pi is also

changed with Hu
j (u < tj). Then, the peer pi selects a new value from the local

histories H ti
i of pi and Hu

j of pj .
At the strategy decision (SD) phase, each peer pi first takes a proposing strat-

egy pstii and informs the other peers of the strategy pstii at each round ti. There
are the following proposing strategies:

• Forward strategy 〈f, v〉: the peer pi takes a new value v based on the prece-
dent relations.

• Backward strategy 〈b, ui, v〉: pi backs to the previous round ui and then
takes a value v based on the precedent relation.

• Mining strategy 〈m, rci = [u1, . . . , un]〉: pi finds a recoverable cut cti =
[vu1

1 , . . . , vun
n]. If every peer agrees on the cut cti, the peer pi takes a global

agreement value on the cut cti and terminates.

40

• Observation strategy 〈o,−〉: pi takes the same values as the previous value
vti−1
i .

Every peer pi sends a proposing strategy pstii and in turns receives a propos-
ing strategy ps

tj
j from every other peer pj . Then, the peer pi selects a strategy

stii for the proposing strategies pst11 , . . . , ps
tn
n which pi receives. First, suppose a

peer pi takes the forward strategy 〈f, vi〉 at the strategy decision phase. Another
peer pj takes one of the strategies, forward (f), backward (b), mining (m), and
observation (o) ones. If the peer pj takes the forward strategy ps

tj
j = 〈f, vj〉, the

peer pi takes a new value from the local histories H t1
1 , . . . , H tn

n . Next, if pj takes
the backward strategy 〈b, uj, vj〉, the local history H

tj
j in pi is compensated with

H
uj

j , i.e. values v
tj−1
j , . . . , vuj

j are compensated. The peer pi takes a value on
the local histories H ti

i and Hu
j . Next, if the peer pj takes the mining strategy

〈m, rcj = [u1, . . . , un]〉, pi has to make a decision on whether pi takes the mining
strategy on the cut ctj if the cut ctj is obtainable in pi. If ctj in not obtainable in
pi, pj takes a new value in the forward strategy.

Secondly, a peer pi takes the backward (b) strategy if there is a branchable
round u. The peer pi compensates the values to the round u and selects a value
v in P u

i (vu−1
i). Then, pi sends the backward strategy 〈b, u, v〉. If the peer pi

receives the forward, backward, or observation strategy from another peer pj , the
peer pi behaves in the same way as taking the forward strategy. Suppose the peer
pi receives the mining strategy 〈m, rcj = [u1, . . . , un]〉 from pj . If the cut ctj =
[vu1

1 , . . . , vun
n] is not obtainable in pi, the peer pi does not take the mining strategy.

There are two cases, u ≤ ui and u > ui if the cut ctj is obtainable in pi. If u ≤ ui,
the peer pi changes the strategy with the mining strategy 〈m, ctj〉. Otherwise, the
peer pi backs to the previous round u in the backward strategy. Here, the peer pj
has to give up taking the mining strategy.

Next, a peer pi takes a mining strategy 〈m, rci = [u1, . . . , un]〉 for a cut cti =
[vu1

1 , . . . , vun
n]. Only if every other peer takes the same mining strategy 〈m, rci〉,

the peer pi backs to the cut cti and takes an agreement value. Suppose the peer
pi receives the mining strategy 〈m, rcj = [s1, . . . , sn]〉 from another peer pj . If
rci
= rcj and the ctj = [vs11 , . . . , vsnn] is obtainable in pi, pi has to decide on which
cut cti or ctj to take. Thus, multiple peers may find different recoverable cuts.
Suppose a pair of peers pi and pj find different recoverable cuts cti and ctj (cti
=
ctj), respectively. The peers pi and pj send cut requests cti and ctj to every other
peer, respectively, as presented here. Now, suppose the peer pi receives ACK
from every peer and sends ACK to pj . Here, since pj may receive ACK from

41

every other peer, pi sends a confirmation message of the cut cti to pj . If pj receives
NAK from some peer, pj sends NAK of ctj to pi. Here, the peer pi sends Agree
of the cut cti to every peer and every peer pj obtains a value v from the cut cti.
If pj receives ACK of ctj from every peer, pj also sends a confirmation message
of the cut ctj to the peer pi. Here, each of the peers pi and pj takes either the cut
cti or ctj . If cti is smaller than ctj (cti < ctj), both of the peers pi and pj take the
smaller cut cti. The peer pi sends Agree of cti to every peer. Then, every peer pj
makes an agreement on a value v for the cut cti [Figure 3.5].

j h

ACK

ACK

ct
ct

ct

j

Agree

time

.

Figure 3.5: Resolution of multiple recoverable cuts.

Finally, suppose that a peer pi takes the observation (o) strategy 〈o,−〉. If pi
receives the forward, backward, or observation strategy from another peer pj , the
peer pi behaves in a same way as discussed here. Suppose the peer pi receives
the mining strategy 〈m, rcj = [u1, . . . , un]〉 from another peer pj . If the cut ctj
[vu1

1 , . . . , vun
n] is obtainable in the peer pi, the peer pj takes the mining strategy on

the cut ctj .
Every peer pi proposes a coordination strategy pstii and exchanges the pro-

posed strategies with the other peers. Then, the peer pi selects a strategy stii for
the proposed strategies pst11 , . . . , ps

tn
n which pi receives. The tuple 〈psti1 , . . . , pstin 〉

of the strategies may be inconsistent. For example, if every proposed strategy
pstii is the forward strategy 〈f, vi〉, the strategies are consistent, i.e. every peer

42

pstii ps
tj
j conditions

〈f, ui〉 〈b, uj〉 1. 〈b, uj〉 is applicable.
or 2. vi does not depend

〈o, vi〉 on a value vsj (s ≥ uj)
(vsj
→i vi).

〈b, ui〉 〈b, uj〉 1. 〈b, uj〉 and 〈b, ui〉
are applicable.
2. [ui, uj] is consistent.

〈b, ui〉 〈m, rcj = 1. 〈b, ui〉 and rcj are
[s1, . . . , sn]〉 applicable.

2. si ≤ ui.
3. 〈b, ui〉 and 〈b, sk〉
are consistent for every
peer pk.

〈m, rci = 〈m, rcj = 1. rci and rcj are
[u1, . . . , un]〉 [s1, . . . , sn]〉 applicable.

2. uh = sh for every
peer ph.

Table 3.2: Consistency conditions.

pi can send the value vi to the other peers. On the other hand, if some peer pi
proposes the mining strategy pstii = 〈m, rci〉 while the other peers propose the for-
ward strategies, the tuple of the proposed strategies are inconsistent, i.e. no peer
pi can take the proposed strategy pstii . If a pair of strategies pstii and ps

tj
j proposed

by peers pi and pj , respectively, are inconsistent, either one of the strategies can
be taken.

Now, suppose the proposed strategies 〈pst11 , . . . , pstnn 〉 are applicable in every
peer. If the strategies are consistent, each peer pi takes the proposed strategy pstii .
Otherwise, the peers have to resolve the inconsistency of the proposed strategies.
We take the following approach toward resolving the inconsistency of the pro-
posed strategies 〈pst11 , . . . , pstnn 〉 in the paper:

1. If a mining strategy ps
tj
j = 〈m, rcj〉 is proposed by some peer pj , each peer

pi takes it.
2. If multiple mining strategies are proposed, each peer pi takes one of the

43

mining strategies with the smallest cut. Suppose a peer pi proposes a mining
strategy 〈m, rci = [s1, . . . , sn]〉 for a cut cti = [vs11 , . . . , vsnn] and another peer
pj proposes 〈m, rcj = [u1, . . . , un]〉 with a cut ctj = [vu1

1 , . . . , vun
n]. If rci =

rcj , the peer pi agrees on taking the mining strategy 〈m, rcj〉. If rci
= rcj
and the cut ctj = [vu1

1 , . . . , vun
n] is obtainable in pi, pi has to decide on which

cut cti or ctj to take. If cti precedes ctj , the peers pi and pj take the cut ctj .
Amount of rounds to be compensated for the cut ctj is smaller than cti. This
means, it takes earliest to compensate the local history in every peer.

3. If a backward strategy 〈b, uj〉 is proposed by a peer pj , pj backs to the round
uj . A local history H

tj
j is compensated in every peer. Here, let G be a global

history 〈H t1
1 , . . . , H tn

n 〉 obtained by compensation of pi. Then, every peer
pi which proposes a forward or backward strategy takes a new value vi on
the global history G, so that the precedent relation →E

i is satisfied. A peer
pi which proposes an observation strategy takes the same value v ti−1

i as one
taken at the round ti - 1. Then, every peer proposes a strategy again.

3.2.9 Behaviors of peers

At each round ti, a peer pi applies the following functions to a global history G =
〈H t1

1 , . . . , H tn
n 〉 where each local history H

tj
j is 〈v0j , v1j , . . . , vtj−1

j 〉 (j = 1, . . . , m).

• v = LDi(v1, . . . , vn): local decision function which gives such a value v that
satisfies the precedent relation on the values v1, . . . , vn in the peer pi.

• v = nextLDi(v1, . . . , vn): a next value which satisfies the precedent rela-
tions for the values v1, . . . , vn is taken in pi.

• ui = findBRi(H
ti
i): a branchable round ui is found in the local history H ti

i .

• cti = findRCi(H
t1
1 , . . . , H tn

n): a recoverable cut cti in the local histories
H t1

1 , . . . , H tn
n is found in pi.

• cti = nextRCi(H
t1
1 , . . . , H tn

n): a next recoverable cut cti for the local histo-
ries H t1

1 , . . . , H tn
n is found in pi.

• ACi(v1, . . . , vn) = T if the values v1, . . . , vn satisfy the agreement condition
ACi.

44

An aggressive peer pi first tries to take a new value vtii = LDi(v
t1−1
1 , . . . , vtn−1

n)
in the forward (f) strategy. Then, the peer pi sends a forward strategy 〈f, vtii 〉 to
every other peer. If not found, pi finds a branchable round ui = findBRi(H

ti
i) in

the local history H ti
i . If found, the peer pi sends a backward strategy 〈b, ui〉 to ev-

ery other peer. If not found, pi finds a recoverable cut cti = findRCi(H
t1
1 , . . . , H tn

n).
The peer pi sends the mining strategy 〈m, [u1, . . . , un]〉 to every other peer if a re-
coverable cut cti = [vu1

1 , . . . , vun
n] could be found. If not found, the peer pi sends

the observation strategy 〈o,−〉. Thus, an aggressive peer takes the strategies in the
order 〈f, b,m, p〉. Figure 3.6 shows the strategy decision phase of an aggressive
peer pi at round ti where H ti

i = 〈v0i , . . . , vti−1
i 〉.

()111 −−= ntt vvfindLDv vf()1 ,,1= n
nii vvfindLDv K ivf ,

()it
iii HfindBRu = iub,

()nt
n

t
ii HHfindRCct K,1

1= m,

−,o

uu ,,1 nuu ,,1 K[]
]nu

n
u vv ,,1

1 K[()=

Figure 3.6: Aggressive peer.

A cooperative peer pi first tries to find a recoverable cut cti = findRCi(H
t1
1 ,

. . . , H tn
n). If a recoverable cut cti = [vu1

1 , . . . , vun
n] is found, the peer pi sends

a mining strategy 〈m, [u1, . . . , un]〉 to every other peer. If not found , the peer pi
takes a new value vtii = LDi(v

t1−1
1 , . . . , vtn−1

n). If found, pi sends the forward strat-
egy 〈f, vtii 〉. If not found, the peer pi finds a branchable round ui = findBRi(H

ti
i).

If found, pi sends the backward strategy 〈b, ui, v〉 where v = findLDi(v
t1−1
1 , . . . ,

45

vui−1
i , . . . , vtn−1

n). If not found, pi sends the observation strategy 〈o,−〉. Thus, a
cooperative peer pi takes these strategies in the order 〈m, f, b, p〉.

A passive peer pi takes the strategies in the order 〈m, b, p, f〉. A fancy peer
takes arbitrarily a strategy.

3.3 A history of a peer

3.3.1 History

Each peer pi takes a value while exchanging values with the other peers at each
round as discussed in the basic coordination protocol. A history H t

i of a peer pi is
a collection of local histories 〈H t

i1, . . . , H
t
in〉 at round t. A local history H t

ii is a
sequence 〈v0i , v1i , . . . , vt−1

i 〉 of values which a peer pi has taken until round t from
the initial round 0. A local history H t

ij is a sequence of values 〈v0j , v1j , . . . , vt−1
j 〉

which a peer pi has received from another peer pj until round t (j = 1, . . . n,
i
= j). Here, H t

ij = H t
jj since we assume the network and every peer to be reliable

and every peer surely receives every value sent in the sending order by another
peer. Initially, H0

ij = φ (j = 1, . . . n). A notation H t
ij |u shows a value vuj which

a peer pi receives from a peer pj at round u (u ≤ t). H t
ii|u shows a value vui

which the peer pi takes at the round u. Suppose a peer pi receives values a, b, c,
d, and e at rounds 0, 1, 2, 3, and 4, respectively from another peer pj . Here, H5

ij =
〈a, b, c, d, e〉. H5

ij |2 = c.
Let H be a sequence 〈x1, . . . , xm〉 (m ≥ 1) of values. Here, a value xl is re-

ferred to as precede another value xh (xl ⇒ xh) if l < h in the sequence H . A
notation “H + x” shows a sequence 〈x1, . . . , xm, x〉 of values obtained by adding
a value x to the sequence H . A subsequence 〈x1, . . . , xl〉 (l ≤ m) is a prefix
of the sequence H . A subsequence 〈xk, . . . , xm〉 (1 < k) is a postfix of the se-
quence H . For example, let H be a sequence 〈a, b, c, d, e〉 of values. A pair
of subsequences 〈a, b, c, d〉 and 〈c, d, e〉 are a prefix and postfix of the sequence
H , respectively. H + 〈y1, . . . , yl〉 = ((. . . ((H + y1) + y2) . . .) + yl−1) + yl =
〈x1, . . . , xm, y1, . . . , yl〉. “H - xl” gives a prefix 〈x1, . . . , xl−1〉 of a sequence H =
〈x1, . . . , xl〉. H - 〈xl, . . . , xm〉 = (. . . ((H - xm) - xm−1) . . .) - xl for a sequence
H = 〈x1, . . . , xm〉 and l ≤ m. For example, H + 〈f, a〉 = 〈 a, b, c, d, e, f, α 〉 and
H - 〈d, e〉 = 〈a, b, c〉

A value x may occur multiple times in a sequence H of values. Let H t
ij[x]

show a subsequence 〈x, . . . , x〉 of instances of a value x in a local history H t
ij .

|H t
ij[x]| is the number of instances of a value x in a local history H t

ij . For example,

46

let H7
ij be a sequence 〈a, b, x, c, d, x, e, f〉 of values. H7

ij[x] = 〈x, x〉, H7
ij [c] = 〈c〉,

|H7
ij[x]| = 2, and |H7

ij[c]| = 1.
A peer pi takes a current value vti after obtaining a tuple 〈vt−1

1 , . . . , vt−1
n 〉 of

values from the other peers p1, ..., pn, respectively, at round t. Let ctii indicate the
current value vti . Then, the peer pi sends the value vti and receives a value vtj from
another peer pj . Let ctij be a value vtj which the peer pi receives from the peer pj
at round t. At round t + 1, the local history H t+1

ij of a peer pi is obtained as H t
ij +

ctij (= vtj) = 〈v0j , v1j , . . . , vt−1
j , vtj〉 (j = 1, . . . , n).

For a pair of values v1 and v2 in a local history H t
ij , v1 precedes v2 (v1 ⇒j

v2) if a peer pi receives the value v2 after the value v1 from a peer pj (j = 1, . . . ,
n). Suppose there are a pair of values v1 and v2 in a local history H t

ij . If a pair of
values v1 and v2 are in the local history H t

ij and the value v1 E-precedes the value
v2 in a peer pj (v1 →E

j v2), the value v1 precedes the value v2 (v1 ⇒j v2) in the
local history H t

ij . However, even if v1 →P
j v2, v2 ⇒j v1 might hold in the local

history H t
ij . A peer pj may take a less preferable value at some round.

3.3.2 Methods on a history

A peer pi takes a value and receives values based on the history H t
i at each round

t. Let D∗
i show a set of possible sequences of values obtained from the domain

Di. Here, H t
ii ∈ D∗

i for every local history H t
ii.

We introduce the following coordination methods on the history H t
i [Figure

3.7]:

1. forward: D∗
i →D∗

i . For a sequence H1 inD∗
i , H1 is a prefix of forward(H1).

2. compensate: D∗
i → D∗

i . For a sequence H1 in D∗
i , compensate(H1) is a

prefix of H1.

3. null: D∗
i → D∗

i . For a sequence H1 in D∗
i , null(H1) = H1.

Let H1 be a sequence 〈 v1, . . . , vm 〉 of values. forward(H1) = 〈v1, . . . , vm,
vm+1, . . . , vl〉. In the forward method, a sequence 〈vm+1, . . . , vl〉 is added to the
sequence H1, i.e. H1 + 〈vm+1, . . . , vl〉. compensate(H1) gives a prefix 〈v1, . . . , vk〉
(k ≤ m) of the sequence H1. This means, a peer pi backs to the previous state

47

null:

compensate:

forward: m 11

1

m+1 l

k

�

m

m

�

k1

m1

�

1 m

Figure 3.7: History methods.

with a history H2 by withdrawing the values vk+1, . . . , vm. In the null method, no
new value is taken at round t, null (H1) = H1.

Each peer pi takes one of the coordination methods at each round as shown in
Figure 3.8. If a peer pi takes the forward method, the peer pi selects a new value
vti at round t as presented in the basic coordination procedure. In the forward
method, a value v is taken and added to the history H1, i.e. 〈v1, . . . , vm, v〉. If a
peer pi takes the null method, the peer pi does not select a new value at round t. If
a peer pi takes the compensate method, the peer pi backs to a previous round k+1
where values taken from the round k + 1 to the present round are withdrawn.

: agreement condition.

nullforward compensate

true

history methods

agreement

Figure 3.8: Coordination procedure of a peer.

48

3.3.3 Compensation

A peer pi can back to the previous round u by compensating a history H t
i at current

round t (u < t). In some meeting of multiple persons, there may be some rule
that each person can withdraw his remark but cannot withdraw a special remark
“no”. Thus, there is some value v which a person cannot withdraw after the person
shows the value v to others. A value x is referred to as primarily uncompensatable
in a peer pi iff the peer pi cannot withdraw the value x after showing the value x
to the other peers, i.e. the value x cannot be withdrawn in the history. Otherwise,
a value is primarily compensatable in a peer pi. Let us consider a local history
H4

ii = 〈a, b, c, d, e〉 of a peer pi. Suppose a value c is primarily uncompensatable
and the other values are primarily compensatable in the peer pi. Here, the values
d and e can be compensated but the value c cannot be compensated. Although the
values a and b are primarily compensatable, neither the value a nor the value b
can be withdrawn because the value c preceded by the values a and b in the local
history H4

ii is primarily uncompensatable.
[Definition] In a local history H t

ii = 〈v0i , . . . , vu−1
i , . . . , vt−1

i 〉 of a peer pi, a value
vu−1
i is referred to as uncompensatable iff the value vu−1

i is primarily uncompen-
satable or some value vi (vu−1

i ⇒ vi) preceded by the value vu−1
i is uncompensat-

able. A value uu−1
i is compensatable iff vu−1

i is not uncompensatable in the local
history H t

ii.
A sequence 〈v0i , v1i , . . . , vt−1

i 〉 is referred to as uncompensatable iff the value
vt−1
i is primarily uncompensatable or the subsequence 〈v0

i , . . . , v
t−2
i 〉 is uncom-

pensatable. A peer pi cannot back to the previous round u at round t (u < t) if a
value vsi (u < s < t) is uncompensatable in the local history H t

ii.
In the example, the local history H 4

ii = 〈a, b, c, d, e〉 is uncompensatable, be-
cause the value c is primarily uncompensatable. The subsequence 〈d, e〉 is com-
pensatable. In a local history H t

ii = 〈v0i , v1i , . . . , vt−1
i 〉, an uncompensatable value

vui is a most recently uncompensatable value iff a subsequence 〈vu+1
i , . . . , vt−1

i 〉 is
compensatable as shown in Figure 3.9. A compensatable postfix 〈vu+1

i , . . . , vt−1
i 〉

is referred to as maximally compensatable subsequence of a local history H t
ii =

〈v0i , v1i , . . . , vt−1
i 〉 iff a prefix 〈v0i , v1i , . . . , vui 〉 is uncompensatable. In the local his-

tory H4
ii = 〈a, b, c, d, e〉, the value c is the most recently uncompensatable value. A

postfix 〈d, e〉 is the maximally compensatable subsequence of H 4
ii. A postfix 〈e〉

is compensatable but not maximally compensatable.

At round t, a peer pi takes a value vti from the tuple 〈vt−1
1 , . . . , vt−1

n 〉. Here,

49

compensatableuncompensatable

: most recently uncompensatable value

ii i
ut 0

i
1

i
u+1
i

t-1
iH

Figure 3.9: Most recently uncompensatable sequence.

vt−1
i →E

i vti . Suppose vt−1
j →E

i vti , i.e. vti = vt−1
i �E

i vt−1
j . Suppose the peer pj

withdraws the value vt−1
j . If a peer pj takes another value v (
= vt−1

j), the peer pi
may take a different value from the value vti depending on the value v. Hence, if
the peer pj compensates the value vt−1

j , the peer pi has to compensate the value
vti since the peer pi takes the value vti which is obtained by applying the local
decision function LDi to the value vt−1

j .
[Definition] For each value vti at round t, a minimal domain MD(vti) is defined to
be a subset of values in the tuple 〈vt−1

1 , . . . , vt−1
n 〉 such that vti = �E

i x∈MD(vti)
x and

vti
= �E
i x∈MD(vti)−yx for every value y in MD(vti).

If any value in MD(vti) is omitted, a least upper bound (lub) of values in
MDi(vti) is not the value vti . A value vti is referred to as depend on a value vt−1

j in
a peer pi (vt−1

j � vti) iff vt−1
j ∈MD(vti).

It is straightforward for the following theorem to hold from the definitions.
[Theorem 1] A value vti is required to be compensated in a peer pi if at least one
value in the minimal domain MD(v t

i) is compensated.
[Theorem 2] If a value vti is uncompensatable in a peer pi, every value in the
minimal domain MD(vti) is uncompensated.
[Proof] Let v be a value in the minimal domain MD(vt

i), v �i v
t
i . Suppose the

value v is compensated in some peer pj . The peer pj might take another value v ′

(
= v) after compensating the value v. The value vti might not be the least upper
bound of MD(vti) since the value v′ is not in MD(vti).

3.3.4 Constraints on values

In some meeting, there is a rule on how many times each person can say a remark.
For example, each person can say “no” at most once in some meeting. Thus,
each value v in a domain Di is characterized in terms of the maximum occurrence

50

MOi(v). The maximum occurrence MOi(v) shows how many times a peer pi can
take in an agreement procedure. If MOi(v) = 1, a peer pi can take a value v at
most once. If a peer pi had so far taken a value v or fever times than MOi(v), i.e.
|H t

ii[v]| < MOi(v), the peer pi can take a value v again at round t. If MOi(v) =
∞, a peer pi can take a value v as many times as the peer pi would like to take.

At round t, a peer pi takes a value vti in the forward method on a history H t
i .

Here, the value vti has to satisfy the following conditions:

[Conditions of possible values]

1. For every value x in the local history H t
ii, x →E

i vti .

2. |H t
ii[v

t
i]| <MOi(vti).

Let P t
i (vt−1

i) show a set of possible values which a peer pi can take at round t.
The set P t

i (vt−1
i) is defined from the conditions as follows:

P t
i (vt−1

i) = { v | |H t
ii[v]| <MOi(v) and for every value x in H t

ii, v
t−1
i →E

i v
}.

A value v is not included in the possible value set P t
i (vt−1

i) if |H t
ii [v]| =

MOi(v). Then, the peer pi takes a value vti in the set P t
i (vt−1

i) if P t
i (vt−1

i)
=
φ. Then, the peer pi sends the value vti to the other peers. If P t

i (vt−1
i) = φ, there is

no value which the peer pi can take at round t in the forward method after taking a
value vt−1

i at round t - 1. Here the peer pi has to take another coordination method,
null or compensate. If |P t

i (vt−1
i)| ≥ 2, the value vt−1

i is referred to as branchable
at round t. Even if a value vt−1

i is branchable in the domain Di, i.e. |Corni(v
t−1
i)|

≥ 2, the value vt−1
i may be taken in previous rounds of the local history H t

ii.

3.4 Back-warding strategies

3.4.1 Cuts

Let δi show the current round of a peer pi. A peer pi has a local history H δi
ii =

〈v0i , v1i , . . . , vδi−1
i 〉 at round δi. Since a peer pi may compensate a local history

Hδi
ii , “δi = δj” does not always hold for every pair of peers pi and pj . A history

Hδi
i is a tuple 〈Hδ1

i1 , . . . , Hδi
ii , . . . , Hδn

in 〉 of local histories.

51

[Definition] A cut of a history Hδi
i is a tuple of values 〈vt11 , . . . , vtnn 〉 where tj <

δj for each j = 1, . . . , n.
A cut 〈vt11 , . . . , vtnn 〉 is referred to as current iff tj = δj for every peer pj . A cut

〈vt11 , . . . , vtnn 〉 is referred to as concurrent iff each value vtii is taken at the same
round. A current cut is concurrent.
[Definition] A cut 〈vt11 , . . . , vtnn 〉 of a history Hδi

i is satisfiable in a peer pi iff the
cut 〈vt11 , . . . , vtnn 〉 satisfies the agreement condition ACi.

Since every peer pi is assumed to have the same agreement condition ACi =
AC in this paper, a satisfiable cut in some peer is also satisfiable in every peer.

In the coordination protocol presented in the preceding section, a peer pi takes
a forward function, i.e. takes a new value. However, even if the current cut is not
satisfiable, there might be a satisfiable cut in a history H δi

i . Suppose the current
cut 〈vδ11 , . . . , vδnn 〉 is not satisfiable but another cut 〈vt11 , . . . , vtnn 〉 is satisfiable in a
history H δi

i . Here, if every peer pi backs to the previous round ti + 1 by compen-
sating the local history H δi

ii (i = 1, . . . , n), all the peers p1, . . . , pn can make an
agreement on a value v = GDi(v

t1
1 , . . . , v

tn
n) for the cut 〈vt11 , . . . , vtnn 〉.

[Definition] Let Hδi
ii be a local history 〈v0i , v1i , . . . , vδi−1

i 〉 of each peer pi (i =
1, . . . , n). A cut ct = 〈vt11 , . . . , vtnn 〉 is obtainable in a peer pi iff a postfix 〈vti+1

i , . . . , vδi−1
i 〉

of the local history H δi
ii is compensatable in the peer pi.

A peer pi can back to the previous value vtii if there is an obtainable cut
〈vt11 , . . . , vt1i , . . . , vt1n 〉. A cut ct = 〈vt11 , . . . , vtnn 〉 is obtainable iff the cut ct is ob-
tainable in every peer. A cut ct = 〈vt11 , . . . , vtnn 〉 is maximally obtainable in a peer
pi iff the cut ct is obtainable in the peer pti, i.e. a postfix 〈 vti+1

i , . . . , vδi−1
i 〉 is

compensatable, but a postfix 〈 vtii , vti+1
i , . . . , vδi−1

i 〉 of the local history H δi
ii is not

compensatable. A cut ct = 〈vt11 , . . . , vtnn 〉 is maximally obtainable iff the cut ct is
maximally obtainable in every peer pi.

Let ct be a cut 〈vt11 , . . . , vtnn 〉 in a history H δi
i . The cut ct is obtainable if the

following conditions hold:

[Obtainability conditions]

1. Letmruj be the most recently uncompensatable value in a local historyH δj
ij .

A value v
tj
j in the cut ct precedes the value mruj in H

δj
ij (mruj ⇒ v

tj
j).

2. Let vk mean a value from a peer pk in the minimal domain MDj(v
tj
j), i.e.

v
tj
j depends on vk (vk �j v

tj
j). From each value vtjj in the cut ct, every value

vk in MDj(v
tj
j) precedes a value vtkk in the local history H

δj
ij (vk ⇒ v

tj
j) as

shown in Figure 3.10.

52

Hi1

Hi3

Hi2

: most recently uncompensatable value.

mru

mru

mru

1

2

3

v1

v2

v3

t1

t2

t3

: value in a cut .ct

i

v

v

v1

2

3

1ct2ct

Figure 3.10: Obtainable cut.

Even if a cut ct = 〈vt11 , . . . , vtnn 〉 satisfies the agreement condition ACi, the
previous value vtii may not be obtainable in some peer pi. We have to find a cut
which is not only satisfiable but also obtainable in each peer pi.
[Definition] A ct = 〈vt11 , . . . , vtnn 〉 is referred to as recoverable in a history H δi

i iff
the cut ct is satisfiable and obtainable in a peer pi. A cut ct is recoverable iff the
cut ct is recoverable in every peer pi.
[Theorem] If there is a recoverable cut ct = 〈vt11 , . . . , vtnn 〉 in a history H δi

i , every
peer pi can make an agreement on the cut ct by backing to the previous round ti +
1.
[Proof] The cut ct = 〈vt11 , . . . , vtnn 〉 satisfies the agreement condition from the as-
sumption. Each peer pi can back to the previous round ti + 1 since the cut ct is
obtainable in the peer pi.

In a history Hδi
i , there might be multiple recoverable cuts ct1, . . . , ctm (m >

1). Every peer pi has to take the same cut ctl out of the possible cuts ct1, . . . , ctn.
Let ct1 and ct2 be a pair of recoverable cuts 〈vt1111 , . . . , v

t1n
1n 〉 and 〈ct2121 , . . . , c

t2n
2n 〉 of

a history Hδi
i , respectively. First, the cut ct1 is referred to as precede the other

cut ct2 in the history H δi
i (ct1 → ct2) if t1j ≤ t2j for every peer pj (= 1, . . . , n).

Otherwise, a pair of the cuts ct1 and ct2 are referred to as intersect. Figure 3.11
shows a history H δi

i and three cuts ct1, ct2 and ct3. Here, the cut ct1 precedes the

53

other cut ct2 (ct1 → ct2). The cuts ct1 and ct2 intersect and the cuts ct2 and ct3
also intersect. Suppose there are a pair of recoverable cuts ct1 and ct2 in a history
Hδi

i . Here, each peer pi has to make a decision on which cut ct1 or ct2 to be taken.
In this paper, each peer pi takes the cut ct1 if the cut ct2 precedes the cut ct1 in
the history H δi

i (ct2 → ct1). Next, suppose a pair of the cuts ct1 and ct2 intersect
in the history H δi

i . Here, we introduce the weight |ct| for a cut ct = 〈vt11 , . . . , vtnn 〉
in a history 〈H δ1

i1 , . . . , H
δn
in 〉 as |ct| =

∑
j=1,...,n (δj - tj). A cut ct1 is referred to as

smaller than another cut ct2 (ct1 < ct2) if |ct1| < |ct2|. The cut ct1 is taken if the
cuts ct1 and ct2 intersect and the ct1 is smaller than the cut ct2 (|ct1| < |ct2|). Let
CT be a set of recoverable cuts in a history H δi

i . A cut ct is referred to as maximal
in the history H δi

i iff there is no cut ct′ in the history H δi
i where ct precedes the

cut ct′ (ct → ct′). Each peer pi selects a cut ct in the set CT as follows:

[Select (CT)]

1. Let MCT be a set of maximal cuts in the set CT with respect to the prece-
dent relation →.

2. A smallest cut ct is selected in the minimal cut set MCT .

H 11

H 13

H 12

ct1

ct3ct2

Figure 3.11: Cuts.

This selection rule means each peer takes a more recent cut to reduce the
number of values which to be withdrawn.

The cuts can be also ordered in the preference of each peer. A cut ct1 = 〈
vt1111 , . . . , v

t1n
1n 〉 is referred to as more preferable than another cut ct2 = 〈 vt2121 , . . . , v

t2n
2n

〉 (ct1 � ct2) iff vt2j2j �P
j v

t1j
1j or vt2j2j |Pj v

t1j
1j for every peer pj (j = 1, . . . , n). The

54

cuts ct1 and ct2 are preferentially independent (ct1 | ct2) iff neither ct1 � ct2 nor
ct1 � ct2. A cut ct1 is referred to as preferentially superior to another cut ct2
(ct1 ⇒ ct2) iff ct1 | ct2 and |{v1j | vt2j2j �P

j v
t1j
1j }| ≥ |{v2k | vt2k1k �P

k vt1k2k }|. The
cut ct1 includes more preferable values than the other cut ct2. A cut ct is taken by
every peer in the selection rule Mselection(CT):

[Selection rules: Mselect(CT)]

1. Let MPC be a set of cuts which are maximally preferable in the cut set
CT .

2. If MPC
= φ, one cut ct is selected in the set MPC, i.e. where ct is the
smallest in the set MPC.

3. If MPC = φ, ct = Select(CT).

A local history H
tj
j of a peer pj at round tj is a sequence 〈v0j , v1j , . . . , vtj−1

j 〉
of values which each peer pj takes until round tj (j = 1, . . . , n). vsj precedes vuj
iff s < u. The value v

tj−1
j is current and the other values are previous in H

tj
j .

〈v0j , . . . , vuj 〉 and 〈vuj , . . . , vtj−1
j 〉 (0 ≤ u ≤ tj − 1) are prefix and postfix of H tj

j ,
respectively. Suppose a peer pi receives values a, b, c, d, and e from another peer
pj . Here, H5

j = 〈a, b, c, a, d, e〉. 〈a, b, c〉 is a prefix and 〈d, e〉 is a postfix of H5
j .

For each value vuj in the history H
tj
j , let V u

j (vuj) show a package of vuj . That
means, a peer pj sends the package V u

j (vuj) and takes the primary value vuj at round
u.

A global history G is a collection of local histories 〈H t1
1 , . . . , H tn

n 〉. In a
global history G = 〈H t1

1 , . . . , H tn
n 〉 where H ti

i = 〈v0i , . . . , vti−1
i 〉 (i = 1, . . . , n), a

tuple [xu1
1 , . . . , xun

n] of values is referred to as cut, where uk ≤ tk and each value
xuk
k is in a package V uk

k of a local historyH tk
k for k = 1, . . . , n. A cut [xu1

1 , . . . , xun
n]

is satisfiable if the values xu1
1 , . . . , xvn

n satisfy the agreement condition AC.
Let cu = [xu1

1 , . . . , xun
n] and cs = [ys11 , . . . , ysnn] be a pair of satisfiable cuts in a

global history G = 〈H t1
1 , . . . , H tn

n 〉 where vi ≤ ti and si ≤ ti for i = 1, . . . , n. The
size |cu| of the cut cu is given as

∑n
i=1(ti - ui). A cut cu is smaller than another

cut cs (cu < cs) iff |cu| < |cs|. The cut cu precedes another cut ct iff ui ≤ si for
i = 1, . . . , n. A cut cu = [yu1

1 , . . . , yun
n] is maximally satisfiable iff ct is satisfiable

and there is no satisfiable cut ct, which precedes ct in a global history G. A cut
cu is maximally satisfiable iff cu is satisfiable and there is no satisfiable cut cu ′

which is smaller than cu.

55

p

p

p

timea

V3
1

1

2

3

V3
2

round round1 2

b

c

d

e

c

a
b

e
b

d

c

V2
2V2

1

V1
2V1

1

p

p

p

time
a1

2

3

b c d

ec ab

eb dc

round 1 round 4round 3round 2

(1)

(2)

Figure 3.12: Multiple cuts.

Figure 3.12 (1) shows the history of three peers p1, p2, and p3 after exchanging

56

packages with each other. At each round k, each peer pi sends a package V k
i which

including a pair of values. For example, the peer p1 sends a package V 1
1 = 〈a, b〉

where a value a is primary and b is secondary. In Figure 3.12 (2), each peer
takes the single-value exchange scheme to send the same values as Figure 3.12
(1). In this example, each peer has five different values in the value domain D =
〈a, b, c, d, e〉. The E-precedent relations between values in each peer pi as follows:

p1: a → b → c → d → e
p2: c → e → b → a → d
p3: b → e → c → d → a

In the multi-value exchange scheme, according to the precedent relation between
values, the peers p1, p2 and p3 send packages V 1

1 = 〈a, b〉, V 1
2 = 〈c, e〉, and V 1

3 =
〈b, e〉 to the other peers at round 1, respectively. On the other hand, in the single-
value exchange scheme, the peers p1, p2 and p3 send values a, c, and b to each
other at round 1, respectively. In the multi-value exchange scheme, as shown in
the Figure 3.12 (1) after two rounds, the peers detect two satisfiable cuts ct1 =
[c, c, c,] and ct2 = [b, b, b] in the history, respectively. Therefore, the peers makes
agreement on the cut ct2, because ct2 is the smallest cut among satisfiable cuts. In
the single-value exchange scheme, as shown in the Figure 3.12 (2), it takes three
rounds to detect the same satisfiable cuts. Following the example, it is obvious
that, by using the multi-value exchange scheme, we can significantly reduce the
overall time consumption.

In this paper, we consider the binary package V i
i only contains two values.

After evaluating the scheme, we would like to extend it to a multi-ary package
which can include more than two values.
[Definition] A cut

[
vu1−1
1 , . . . , vun−1

n

]
is consistent in a global history G = 〈H t1

1 ,
. . . , H tn

n 〉 iff there is no value vj in a package V sj
j (vsjj) (sj ≤ uj − 1) such that vrii

→i vj and ui − 1 ≤ ri.

3.4.2 Re-selectable values

Suppose a peer pi takes a maximal value vti in the domain Di in the forward
method at round t. At round t + 1, the peer pi cannot take another value since
the value vti is maximal in the domain Di. Here, the peer pi has to go back to
the previous round u by the compensation method and takes another value. We
discuss to which previous round the peer pi can compensate the history H t

i at
round t.

57

Suppose a peer pi takes values v0i , v
1
i , . . . , v

u
i , . . . , vδi−1

i in the local history
Hδi

ii . A peer pi takes a value vu+1
i after taking a value vui . If there is only one

value vu+1
i which follows the value vui , i.e. vui →E

i vu+1
i , the peer pi cannot take

another value different from the value vu+1
i at round u. Hence, it is meaningless

to compensate a subsequence 〈vu+1
i , . . . , vδi−1

i 〉 in the local history H δi
ii , i.e. goes

back to the previous round u + 1. On the other hand, suppose there are multiple
values v1, . . . , vm (m ≥ 2) which the value vui precedes, i.e. vui →E

i vl (l = 1,
. . . , m). Suppose the peer pi takes a value vl as vu+1

i in the values v1, . . . , vm. If
the postfix 〈vu+1

i , . . . , vδi−1
i 〉 in the local history H δi

ii is compensated, the peer pi
takes another value vk (
= vl) where vui →E

i vk by backing to the previous round u
+ 1.

Each time the peer pi backs to the round u + 1, the peer pi has to take a value
in Corni(vui) which has not been so far taken. For each branchable value vui , let
Usedi(vui) indicate a set of values in Corni(vui) which the peer pi has taken until
round u + 1. If a value vui is first taken at round u + 1, Usedi(vui) = φ. The peer pi
takes the forward method and eventually backs to the round t + 1. Then, a value
v in Corni(vui) is taken. Here, Usedi(vui) = {v}. Suppose the peer pi backs to
the previous round u + 1. Here, the peer pi takes a value v in Corni(vui) but not
in Usedi(vui) which satisfies the possible value condition, i.e. v ∈ Corni(vui) -
Usedi(vui). The set P u+1

i (vui) defined in the previous subsection is redefined as
follows:

P u+1
i (vui) = { v | v ∈ Corni(vui) - Usedi(vui) and |Hu+1

ii [v]| <MOi(v) }.

Then, the value v is added to the set Usedi(vui). A value vui is referred to as
branchable in the history H δi

i iff P u+1
i (vui)
= φ.

[Definition] Let Hδi
ii be a local history 〈v0i , v1i , . . . , vui , . . . , vδi−1

i 〉 of values which
a peer pi has taken until round δi. A value vui is referred to as reselectable in
the history H δ

ii iff vui is branchable in Hδ
ii and a subsequence 〈vu+1

i , . . . , vδi−1
i 〉 is

compensatable.
By compensation, a peer pi can back to a re-selectable value vui taken at the

previous round u + 1. Then, the peer pi takes a new value in the possible value set
P u+1
i (vui) = Corni(vui) - Usedi(vui).

58

Chapter 4

Distributed Agreement Protocols

4.1 Value exchange schemes

4.1.1 Single value exchange scheme

A group is composed of reliable peers interconnected in a reliable network. A
domain Di of a peer pi is a set of possible values which pi can take. In this paper,
we assume every peer pi has the same domain Di (= D). Each peer pi takes a value
vti−1
i in Di and sends vti−1

i to the other peers p1, . . . , pn at each round ti. Unless
the tuple 〈vt1−1

1 , . . . , vtn−1
n 〉 satisfies the agreement condition AC; all, majority,

weighted majority, some, and consonance ones [43, 44], a peer pi sends another
value vtii . Until AC is satisfied, this procedure is iterated.

A value should be more expensive than the previous values in auction systems.
Thus, some values can be taken but the other values cannot be taken after a value is
taken. A value v1 existentially (E-) precedes another value v2 in a peer pi (v1 →E

i

v2) if and only if (iff) pi is allowed to take v1 after v2. We assume the precedent
relation →E

i is transitive. v1 and v2 are E- incomparable in pi (v1|Ei v2) iff neither
v1 →E

i v2 nor v2 →E
i v1. The preferentially (P-) precedent relation→P

i [42, 43, 44]
is also defined. In this paper, we consider only the E-precedent relation →E

i for
simplicity.

A value v1 is maximal and minimal with respect to the relation →E
i iff there is

no value v2 such that v1 →E
i v2 and v2 →E

i v1 in Di. A value v1 is top and bottom
with respect to the relation →E

i iff v2 →E
i v1 and v1 →E

i v2 for every value v2
in Di. Let Corni(x) be a set of values { y | x →E

i y } which pi can take after
a value x in Di. A least upper bound (lub) of values v1 and v2 (v1 �E

i v2) is a
value v3 in Di such that v1 →E

i v3, v2 →E
i v3, and there is no value v4 such that

59

v1 →E
i v4 →E

i v3 and v2 →E
i v4 →E

i v3 in a peer pi. For example, a pair of peers
pi and pj take vi and vj at round t, respectively. A greatest lower bound (glb) of
v1 and v2 (v1 �E

i v2) is similarly defined.
At round ti, a peer pi takes a value vtii from the tuple 〈vti−1

1 , . . . , vti−1
n 〉 where

vti = vt−1
i �E

i vt−1
j for some peer pj . Here, suppose the peer pj compensates the

value vt−1
j . If pj takes another value v (
= vti−1

j), pi may take a different value
from vti depending on the value v. Hence, the peer pi has to compensate the value
vti since pi takes vti from the value vti−1

j by using the precedent relations. For
a value vtii at each round ti, a minimal dominant domain MD(v ti

i) is a subset
of values in the tuple 〈vt1−1

1 , . . . , vtn−1
n 〉 such that vtii = �E

i x∈MD(v
ti
i)
x and vti
=

�E
i x∈MD(v

ti
i)−y

x for every value y in MD(vtii).

[Definition] A value vtii depends on a value vti−1
j in a peer pi (vti−1

j ⇒i v
ti
i) iff

v
tj−1
j ∈MD(vtii).

4.1.2 Multi-value exchange (MVE) scheme

In an agreement protocol, each peer sends one value to the other peers at each
round [42, 43, 44, 53]. To more efficiently make an agreement among peers, we
newly consider a multi-value exchange scheme. Here, at each round where peers
exchange the proposing values with each other, each peer pi sends a package of
values to the other peers. In the package, not only a proposing value but also ad-
ditional candidate values are included. In previous works [42, 43, 44], we mainly
discuss the single-value exchange schemes where each peer sends only one value
to the other peers at each round. By using the multi-value exchange scheme, we
can more efficiently detect a value which satisfies the agreement conditions. We
can significantly reduce the overall time overhead of the agreement procedure.

In the multi-value exchange scheme, each peer pi sends a set V t
i of values to

the other peers at round t. The set V t
i is referred to as package of values. The

values in the package V t
i is totally ordered in the preference as 〈vt1i , . . . , vtmi

i 〉 (mi

≥ 1) where vtii is referred to as primary, i.e. most preferable value and vtki is the
kth preferable value. For every value vtki in the package V t

i , vt−1
i →E

i vtki .
At each round t, a peer pi receives the packages V t

1 , . . . , V
t
n from the peers

p1, . . . , pn as shown in Figure 4.1. Here, if there is a tuple 〈v1, . . . , vn〉 ∈ 〈V t
1 ×

· · · × V t
n〉 of values which satisfy the agreement condition AC, every peer pi

makes an agreement on the tuple 〈v1, . . . , vn〉 and then take an agreement value.
There may be multiple tuples in V t

1 × · · ·× V t
n which satisfy agreement condition

AC. Here, let ord(vj) denote the preference order of a value vj in a package V t
j .

60

For example, ord(vtkj) is k in a package V t
i = 〈vt1j , . . . , vtmj

j 〉. Let 〈x1, . . . , xn〉
and 〈y1, . . . , yn〉 be a pair of tuples in the direct product V t

1 × · · ·× V t
n . Here,

〈x1, . . . , xn〉 is more preferable to 〈y1, . . . , yn〉 if
∑n

i=1ord(xi) <
∑n

j=1ord(yj).
Each peer pi takes the most preferable tuple which satisfies the agreement condi-
tion AC.

If there is no tuple satisfying the agreement condition AC, each peer pi finds
values which is E-preceded by the primary value vt1i in the package V t

i . At round
t + 1, each peer pi sends package V t+1

i where every value is E-preceded by the
value vt1i . In this paper, we assume each package V t

i can include at most two
values, primary value vtiα and secondary value vtiβ for simplicity.

The application layer of each individual peer makes a decision on what value
the peer can take at the next round. In addition, the agreement condition of the
group is decided according to the purpose of the group, like majority decision and
so on. If the peer could not change the primary value after the current round,
for example, the peer pi takes the primary value viα and sends the value package
〈viα,viα〉 to the other peers. By analyzing the value package which receives from
each other, it is not difficult for each peer pj to find that, the peer pi will not change
its primary value viα from now on. In traditional single-value exchange schemes,
it takes one more round to find out that, the individual peer has reached the final
decision value.

Let us consider a group G of multiple peers p1, . . . , pn (n > 1). The domain
Di is a set of possible values which a peer pi can take. In this paper, we assume
every domain Di is the same D (i = 1, . . . , n). First, each peer pi shows a value
v1 in D to the other peers. If the peers do not make an agreement on the values,
each peer pi takes another value v2 in D. Here, ther are values which pi can take.
A value v1 existentially (E-) precedes another value v2 in a peer pi (v1 →E

i v2)
if and only if (iff) pi is allowed to take v1 after v2 [42, 43, 44]. v1 and v2 are E-
incomparable in pi (v1|Ei v2) iff neither v1 →E

i v2 nor v2 →E
i v1. Let Corni(x) be

a set of values which a peer pi can take after a value x, i.e. {y | x →E
i y}. The

preferentially (P-) precedent relation v1 →P
i v2 [42, 43, 44] is also defined to show

that pi prefers v1 to v2 if pi can take any of v1 and v2. In this paper, we consider a
static group where each peer pi does not change the domain Di and the precedent
relations →E

i and →P
i .

61

p

p

p

time

V1
t-1

Vi
t-1

Vn
t-1

1

i

n

V1
t

Vi
t

Vn
t

round roundt-1 t

v t
i1

v t
in

. . .
. . .

. . .

: package : value

Figure 4.1: Multi-value exchange.

Suppose each peer pi can have a subset Ii of initial values (Ii ⊆ Di) which pi
would like to take in the agreement procedure. Let PVi be a set of values ∪x∈Ii
Corni(x), which shows a subset of possible values which a peer pi can take at the
initial round. If there is a satisfiable tuple 〈v1, . . . , vn〉 ∈ PV1 × · · ·× PVn which
satisfies the agreement condition AC, every peer can make an agreement on the
tuple. Here, the group G of the peers are agreeable for the agreement condition
AC. Suppose there are a pair of satisfiable tuples 〈x1, . . . , xn〉 and 〈y1, . . . , yn〉.
If xi →E

i yi or xi |Ei yi for i = 1, . . . , n, the tuple 〈x1, . . . , xn〉 precedes the tuple
〈y1, . . . , yn〉. Suppose a pair of satisfiable tuples 〈x1, . . . , xn〉 and 〈y1, . . . , yn〉 are
not preceded. If xi →P

i yi or xi |Pi yi for i = 1, . . . , n, the tuple 〈x1, . . . , xn〉 is
more preferable than the tuple 〈y1, . . . , yn〉.

62

p

p

p

1

2

3

D1

D3

D2

=

=

=

=

PV
2

=

PV1 =

=

PV1=

PV2=

Figure 4.2: Maximal-value exchange (XVE) scheme.

p

p

p

1

2

3

D1

D3

D2

=

=

=

=

PV
2

=

PV1 =

=

PV1=

PV2=

Figure 4.3: Single-value exchange (SVE) scheme.

In the basic agreement protocol, each peer pi exchanges the value set PVi

with the other peers. Then, each peer pi finds the most preceded, preferable tu-
ple in the direct product PV1 × · · ·× PVn. It takes just one round to make an
agreement. This is a maximal value exchange (XVE) scheme [Figure 4.2]. At the

63

p

p

p

1

2

3

D1

D3

D2

=

=

=

PV1 =

x

PV
2

=

x

PV3 =

x

PV1=

x

PV2=
x

PV
3

=
x

Figure 4.4: Multi-value exchange (MVE) scheme.

other extreme, each peer sends only one value in PVi like the simple protocols
[42, 43, 44, 53]. Each peer pi has to show a value x after y where y →E

i x. This
is a single value exchange (SVE) scheme [Figure 4.3]. There is a multi-value ex-
change (MVE) [Figure 4.4] scheme in between XV E and SV E. Here, each peer
pi sends a subset Vi of PVi to the other peers. At each round t, each peer pi sends
a package Vi of possible values to the other peers. Values in Vi are ordered in
the preference. The top value of the package is the most preferable value named
primary one. The others are secondary ones. On receipt of the package Vj from
every peer pj , each peer pi finds a satisfiable tuple of values in a collection of the
packages V1, . . . , Vn.

Suppose a pair of peers p1 and p2 have possible values a and b and possible
values b and c, respectively. If p1 and p2 show values a and c, respectively, the
peers show different values a and c in the SV E scheme. Here, the peers p1 and
p2 cannot make an agreement even if the peers have the satisfiable value b. It
takes more than one round to show multiple possible values to the other peers.
Furthermore, depending on an order in which each peer shows values to the other
peers, the peers may not make an agreement. The peer p1 sends a package V1 =
{a, b} and p2 sends V2 = {b, c} in the MV E scheme. On receipt of the package
V2 from p2, the peer p1 finds that the other peer p2 can also take the value b. Then,
the peers p1 and p2 agree on the value b. Thus, by taking advantage of the MVE
scheme, each peer pi obtains one or more than one possible value from every other

64

peer at one round. Then, each peer pi can find a satisfiable tuple of values in a
collection of the packages V1, . . . , Vn which pi has received from the other peers.
The more number of values are exchanged at each round, the shorter it takes to
make an agreement and the higher possibility every peer makes an agreement but
the more communication overhead and processing overhead might be implied.
There is a trade off point between the size of a package and the overhead time and
availability.

If there is no satisfiable tuple, each peer pi finds values which is E-preceded
by the primary value vt1i in the package V t

i . At round t + 1, each peer pi sends a
package V t+1

i where every value is E-preceded by the primary value vt1i in V t
i . In

this paper, we assume each package V t
i can include at most some number K (≥1)

of the possible values; the primary value vt1
i and secondary values vt2i , . . . , v

tK
i in

order to increase the performance and make the implementation simple.
The application layer of each individual peer makes a decision on what value

the peer can take at the next round. In addition, the agreement condition AC is
decided according to the purpose of the group like majority decision.

4.2 Multipoint relaying (MPR) scheme

4.2.1 Basic algorithm

A group G is composed of multiple peers processes (peers) p1, . . . , pn (n > 1)
which are interconnected in P2P overlay networks [58]. In a scalable P2P overlay
network, each peer cannot directly send a message to every other peer of a group.
Each peer can only send a message to its neighbor acquaintance peers [36]. In
one approach to broadcasting a message, a peer pi first sends a message to every
neighbor peer pj . On receipt of a message, the peer pj forwards the message to the
neighbor peers. This is a pure flooding scheme [60]. However, the pure flooding
scheme implies the huge network overhead due to the message explosion.

The concept of “multipoint relaying (MPR)” scheme is developed to effi-
ciently broadcast messages [59]. Here, on receipt of a message, a peer forwards
the message to all the neighbor peers but only some of the neighbor peers for-
ward the message to other peers. Each peer is assumed to know not only the first
neighbor peers but also the second neighbor peers. First neighbor peers are ac-
quaintance peers with which the peer pi can directly communicate. The peer pi
is assumed to know every second neighbor peer, but cannot directly communi-
cate with it. By taking into consideration the second neighbor peers in addition

65

to the first neighbor peers, each peer selects a subset of the first neighbor peers
only which forward the message. The selected neighbor peers are referred to as
relay peers. The other neighbor peers which just receive the message and do not
forward the message are leaf peers. Since the number of messages transmitted
can be significantly reduced, the MPR scheme provides an adequate solution to
reduce the overhead to broadcast messages in P2P overlay networks. Every leaf
peer just receives a message from a relay peer while every relay peer forwards the
message to the neighbor peers.

: requesting peer

: relay peer

: leaf peer

Figure 4.5: Multipoint relays.

Let N(pi) be a set of first neighbor peers of a peer pi. A set of the second
neighbor peers of a peer pi is denoted by N 2(pi). N2(pi) = ∪pj∈N(pi)N(pj) -
N(pi). Let R(pi) and L(pi) be collections of replay peers and leaf peers of a
peer pi, respectively. Here, N(pi) = R(pi) ∪ L(pi) and R(pi) ∩ L(pi) = φ. The
following condition is required to hold:

• N2(pi) = ∪pj∈R(pi)N(pj).

66

A message sent by a peer pi can be delivered to every second neighbor peer of pi
where only the relay neighbor peers of pi forward the message to second neighbor
peers of pi. It is noted N(pi) ∩ N(pj) might not be φ for some pair of relay peers
pi and pj of a peer. If N(pi) ∩ N(pj)
= φ, there are multiple ways to deliver a
message to a message to a common peer in N(pi) ∩ N(pj). Here, we define the
coverage of a peer pi:

• A peer pj is referred to as covered by a peer pi iff pj ∈N(pi) or pj is covered
by some relay peer pk ∈ R(pi).

A collection of peers covered by a peer pi is referred to as subnetwork covered
by the peer pi. An algorithm MPR(pi, N(pi)) for selecting R(pi) [59] in N(pi)
is shown as follows:

[MPR(pi, C(pi))] /* C(pi) is a subset of the first neighbor peers of a peer pi. A
collection R(pi) of relay peers are selected in C(pi) and each relay peer pj in
R(pi) is assigned with a set C(pj). */

1. Start with an empty multipoint relay set R(pi);
R(pi) = φ. S = N2(pi). F = C(pi).

2. While F
= φ, do the following steps:
(a) select a neighbor peer pj in F where N(pj) ∩ N(pk) = φ for every

other first neighbor peer pk in F .
(b) if found, R(pi) = R(pi) ∪ {pj}, S = S - N(pj), F = F - {pj}.
(c) if not found, go to step 3.

3. If F = φ, terminate;
4. While S
= φ, do the following steps:

(a) for each peer pj in F , obtain a subset U(pj) of peers which pj covers
in the set S, U(pj) = N(pj) ∩ S.

(b) select a peer pj where |U(pj)| is the maximum, R(pi) = R(pi) ∪ {pj}.
S = S - U(pj), F = F - {pj}, C(pj) = U(pj).

5. For each peer pj in F , C(pj) = φ, i.e. pj is a leaf.
6. For each relay peer pj in R(pi), MPR(pj , C(pj)).

Here, for each neighbor peer pj in N(pi), C(pj) is obtained as a set of neighbor
peers of pj . If pj is a leaf peer, C(pj) = φ. For each neighbor peer pj in C(pi), the
algorithm is recursively applied to obtain a set R(pj) of relay peers of pj .

As shown in Figure 4.5, a directed acyclic graph (DAG) D(pi) if D(pi) is
obtained by applying the algorithm MPR to the peer pi in a group G. Here, pi is
referred to as a root peer in D(pi). Through the DAG D(pi) of pi, the peer pi can
deliver a message to every peer in the group G.

67

4.2.2 Faults

In a DAG obtained by the MPR algorithm, a parent node pi shows a relay peer
which forwards values to the child peers on receipt of the values. A collection
of the child peers of a peer pi is shown as C(pi). R(pi) indicates a set of relay
peers of a peer pi obtained by the MPR algorithm. U(pi) is a set of leaf peers of
pi. Here, C(pi) = R(pi) ∪ U(pi) and R(pi) ∩ U(pi) = φ. Peers colored black and
white show relay and leaf peers, respectively, in Figure 4.6.

Sg

r

p

a
b

c

d

: requesting peer

: relay peer

: leaf peer

Figure 4.6: Failure in multipoint relays.

A peer which is chosen as a relay peer plays a critical role for delivering mes-
sages to other peers. If a relay peer pi is faulty, every peer covered by the faulty
peer pi cannot receive a message from pi. Let us consider a subnetwork S of a
peer p shown in Figure 4.6, which is circled by the line. A peer p is a root of
the subnetwork S which is also a DAG. Suppose the peer p is faulty. Here, every
peer in the subnetwork S cannot receive messages which the peer p receives from

68

the parent. Thus, if a relay peer pi is faulty, every peer pj in a sub-network of
the peer pi may not receive messages. If pi has only one parent pj , pi does not
receive any messages. Here, pj is isolated. If pj has more than one parent, pj
may receive message from another parent, which is not isolated. If every parent
of pi is faulty or isolated, pi does not receive any messages. Thus, a peer pi is
referred to as isolated iff every parent peer of pi is faulty or each parent of pi is
faulty or isolated. An isolated peer does not receive any message while a faulty
peer receives messages but does not send messages. In order to increase the ro-
bustness for broadcasting messages, we newly introduce the trustworthiness of a
neighbor peer. A trustworthy peer is a peer which can send only correct messages
to child peers if the peer is a relay type. The higher trustworthy a peer is, the
more higher probability the peer can forward message. A peer pi selects more
trustworthy neighbor peers as relay peers. Then, the peer pi sends a message to
the neighbor peers and only the trustworthy neighbor peers forward the message
to their neighbor peers. Suppose a second neighbor peer pk in N2(pi) has multi-
ple first neighbor peers pk1, . . . , pklk in N(pi) which are parents of pk. Hence, the
most trustworthy neighbor peer pkh is selected as a relay peer. Here, the peer pkh
has the highest possibility to deliver a message from pi to pk.

Let us consider Figure 4.7 (a) as an example. Here, let Ti show the trustwor-
thiness value of a peer pi. In Figure 4.7, suppose Tg > Tr > Tp for three peers g, r,
and p. Here, we select the most trustworthy peer g as a relay peer. Then, the peer
g forwards a message to every peer in the subnetwork S. This is an ideal case,
that is, the subnetwork S which is originally covered by the peer p can be also
covered by the peer g. However, the peer g might not be able to cover every peer
in the subnetwork S as shown in Figure 4.7 (b). Therefore, another peer has to be
selected to cover the peers which the peer g does not cover. In Figure 4.7 (b), the
peers c and d uncovered by the peer g are covered by the second most trustworthy
peer r. The overall idea is that every subnetwork is covered by a most trustworthy
relay peer. It depends on the overlay topology among peers how many number
of relay peers are required to cover all the peers in a subnetwork. In Figure 4.7
(b), one more relay peer is required to cover the same subnetwork S as Figure
4.6. If we use more number of trustworthy neighbor peers to transmit messages
to others, we can increase the overall fault-tolerance of the MPR mechanism.

69

4.3 Trustworthiness-based broadcast (TBB) scheme

4.3.1 Trustworthiness of peer

In P2P systems, each peer has to obtain information of other peers and propagate
the information to other peers through neighbor peers. A neighbor peer pj of a
peer pi means an acquaintance with which pi can directly communicate. Thus, it
is significant for each peer to have some number of neighbor peers. Moreover, it
is more significant to discuss if each peer has trustworthy neighbor peers. In real-
ity, each peer might be faulty or might send obsolete, even incorrect information
to the other peers. If some peer pj is faulty, other peers which receive incorrect
information on the faulty peer pj might reach a wrong decision. It is critical to dis-
cuss how a peer can trust each of its neighbor peers [36]. In this paper, we newly
introduce a trustworthiness-based broadcast (TBB) algorithm by introducing the
trustworthiness concept to the MPR algorithm.

Suppose a requesting peer pr would like to select a neighbor peer pi as a relay
peer for broadcasting a message to the other peers. Let Tri show the trustworthi-
ness of a neighbor peer pi for a peer pr, which the peer pr holds. N(pr) shows a
collection of neighbor peers of the requesting peer pr. The peer pr calculates the
trustworthiness Tri of a neighbor peer pi by collecting information on the peer pi
from every neighbor peer pk in N(pr) which can communicate with both pi and
pr, i.e. pk ∈ N(pr) ∩ N(pi). There is some possibility that the peer pi is faulty or
sends incorrect information. Hence, the peer pr does not consider the information
from the target peer pi to calculate the trustworthiness Tr(pi).

A peer pk sends a trustworthiness request to the peer pi and receives a reply
from pi. This interaction is referred to as transaction. If pk receives a successful
reply, the transaction is successful. Otherwise, it is unsuccessful. The peer pk

considers the neighbor peer pi to be more trustworthy if pk had more number of
successful transactions for pi. Let BTki be the subjective trustworthiness [36] Tki

on the target peer pi which a peer pk obtains through communicating with the peer
pi. Let TTki show the total number of transactions which pk issues to pi. Let STki

(≤ TTki) be the number of successful transactions which pk issues to pi. Here, the
subjective trustworthiness BTki is calculated as follows:

BTki =
STki

TTki
(4.1)

If the peer pi is not a neighbor peer pk, pi
∈ N(pk), the peer pk cannot obtain
the subjective trustworthiness BTki. In addition, if the peer pk had not issued any

70

transaction to the peer pi even if pi ∈ N(pk), BTki = ⊥. Thus, according to com-
munication with each neighbor peer pk, each peer pr obtains the subject trustwor-
thiness BTki for the neighbor peer pi. The subjective trustworthiness BTki shows
how reliably a peer pi is recognized by a peer pk. Therefore, if a peer pr would
like to get the trustworthiness of a target peer pi, the peer pr asks each neighbor
peer pk to send the subjective trustworthiness BTki of the peer pi. Each neighbor
peer pk keeps in record of the subject trustworthiness BTki in the log. Here, let S
be a collection of neighbor peers which send the subjective trustworthiness on pi

which is not ⊥ to the peer pr. After collecting the subjective trustworthiness BTki

of the target peer pi from each neighbor peer pk, the requesting peer pr calculates
the trustworthiness Tri of the peer pi by the following formula:

Tri =

∑
pk∈{pk∈S|BTki �=⊥}BTki

|{pk ∈ S|BTki
= ⊥}| (4.2)

Let us consider Figure 4.8 as an example. Here, a requesting peer pr would
like to know the trustworthiness Tri of a neighbor peer pi. The peer pr has five
neighbor peers, p1, p2, p3, p4, and pi. Here, N(pr) = {p1, p2, p3, p4, pi}. A col-
lection of neighbor peers of the peer pr which excludes the peer pi is indicated
by a collection S = N(pr) - {pi} = {p1, p2, p3, p4}. Here, the requesting peer
pr requests each neighbor peer pk in the neighbor set S to send the subjective
trustworthiness BTki of the peer pi (k = 1, 2, 3, 4). After receiving the subjective
trustworthiness of the peer pi from all the four neighbors in S, the peer pr calcu-
lates the trustworthiness Tri of the peer pi by using the formula (4.2), Tri = (BT1i

+ BT2i + BT3i + BT4i) / 4.

4.3.2 Trustworthiness - based broadcast (TBB) algorithm

By using the trustworthiness of each neighbor peer, the original MPR algorithm is
modified to the trustworthiness-based broadcast (TBB) algorithm. In order to se-
lect relay peers of a peer pr, the following procedure TBB(pr, N(cpr)) is applied
to a DAG whose root is pr:

TBB(pr,C(pr))

1. Start with an empty relay set R(pr), R(pr) = φ. Let S be a set of trustworthy
neighbors of pr, i.e. {pj ∈ C(pr) | Trj ≥ α} where 0 ≤ α ≤ 1. α gives a
threshold value on the trustworthiness. If Tri ≥ α, the peer pr recognizes

71

the neighbor peer pi to be trustworthy. Otherwise, pi is considered to be
untrustworthy.

2. While TF
= φ, do the following steps:
(a) select a trustworthy neighbor peer pi in TF such that N(pi) ∩ N(pj)

= φ for every trustworthy peer pj in TF (pj
= pi).
(b) if found, F = F - {pi}, TF = TF - {pi}, S = S - N(pi), R(pr) = R(pr)

∪ {pi}.
(c) if not found, go to step 3.

3. While TF
= φ, do the following steps:
(a) U(pj) = N(pj) ∩ S for each pj in TF .
(b) select a trustworthy neighbor peer pi in TF such that |U(pi)| is the

maximum, i.e. the number of neighbor peers which are not covered is
the maximum.

(c) F = F - {pi}, TF = TF - {pi}, SS = S, S = S - N(pi), R(pr) = R(pr)
∪ {pi}, C(pi) = N(pi) ∩ SS.

4. While F
= φ, /* TF = φ */ do the following steps:
(a) select a peer pj in F such that |N(pj) ∩ S| is the minimum.
(b) F = F - {pj}, SS = S, S = S - N(pj), R(pr) = R(pr) ∪ {pj}, C(pi) =

N(pi) ∩ SS.
5. For each relay neighbor peer pi in R(pr), TBB(pi, C(pi)).

For each neighbor peer pi, C(pi) gives a collection of neighbor peers to which
pi forwards a message, C(pi) ⊆ N(pi). If pi is not a relay peer, C(pi) = φ. C(pi)
= R(pi) ∪ U(pi) and R(pi) ∩ U(pi) = φ. In step 4, each untrustworthy neighbor
peer pi is assigned with as small number of neighbors as possible. Even if the peer
pi is faulty, only a smaller number of peers are damaged.

Let MT (pr) be a directed acyclic graph (DAG) of a peer pr obtained by the
algorithm TBB(pr, N(pr)). Here, pr is a root peer of the DAG MT (pr). Here,
a DAG MT (pr) is referred to as fault-isolated iff every relay peer pi in R(pr)
is trustworthy and a subDAG MT (pi) is also fault-isolated. In the fault-isolated
DAG, every untrustworthy peer is a leaf peer. Hence, even if an untrustworthy
peer pi is faulty, no other peer is isolated.

72

g

r

S

p

a
b

c

d

g

r

S

p

a
b

c

d

(a)

(b)
: requesting peer

: relay peer

: leaf peer

Figure 4.7: Trusted neighbors in multipoint relays.

73

N(p) - p

p

1

p

p

p

p
p

2

i 3

r
4

i i

S

S =

Figure 4.8: Trustworthiness of peer.

74

Chapter 5

Evaluation

5.1 Assumptions

Compared with the original MPR algorithm and pure flooding algorithm, we
evaluate the proposed trustworthiness-based broadcast (TBB) algorithm in terms
of the number of messages transmitted to broadcast a message in a network. In this
evaluation, we consider an L * L grid structured overlay network for simplicity.
In this evaluation, L shows the length of the grid which means how many peers on
each point of the grid. The total number n of peers in the network is L ∗ L. Since
both of the MPR algorithm and the TBB algorithm aim at reducing the number
of unnecessary messages, we measure the number of messages which are sent in
each algorithm. As we mentioned in the preceding section, peers are isolated due
to faults of relay peers in the MPR algorithm under a constraint that every peer
receives a message sent by a root peer. Hence, we evaluate the algorithms in terms
of the number of messages transmitted in presence of faulty peers.

In this paper, a faulty peer is assumed to receive a message but is not able to
forward the message to other peers. An algorithm is referred to as sound iff a
message can be delivered to all the peers in the network. Since in the agreement
procedures the opinions of the participant peers are significant to the outcome of
the agreement procedure, the protocol which we consider should work in sound
way with fewer number of messages exchanged in the network.

In the evaluation, some number of peers are randomly selected to be faulty.
F shows the ratio of the faulty peers to the total number n (= L2) of peers in the
network. For example, “F = 0.05” means that five percentages of the peers are
faulty. Ti shows the trustworthiness of a peer pi, which is randomly assigned to

75

each peer pi. Ti is a value randomly chosen in range of 0.1 to 1.0. The higher
Ti is, the more trustworthy the peer pi is. First, the trustworthiness Ti is given to
each peer pi. Then, each peer pi is decided whether pi is faulty or not based on
the faulty ratio F . Depending on the trustworthiness value Ti of each peer pi, we
select a peer which has the smallest Ti value to be faulty. If we found multiple
peers which have the same lowest Ti value, we take a peer whose peer ID is the
biggest. That is, the lower trustworthiness Ti a peer pi has, the more frequently pi
is faulty.

5.2 Scenarios

In the MPR algorithm, no trustworthiness concept is considered while aiming at
reducing the number of relay peers in the network. The basic procedure of the
MPR algorithm is shown as follows:

1. Initiate the procedure from initiator peer.

2. Obtain a list NP1 of first neighbors. First neighbor peers of the initiator
peer mean peers which have direct connections with the initiator peer.

3. After obtaining NP1, calculate a list NP2 of the second neighbor peers of
the initiator peer by obtaining the first neighbor peers of the peers in NP1.

4. Calculate the MPR peers which can cover the peers in NP2 as follows:

(a) Find a peer in NP1 which has the largest number of connections with
other peers.

(b) If multiple peers have the same number of connections, take a peer
whose peer ID is the biggest.

(c) Mark peers in NP2 through which the selected peer can pass the mes-
sage, then put the selected peer into the MPR list.

5. After each MPR calculation, the network is checked, if all peers have re-
ceived the message. If so, then terminate the procedure.

6. If all peers are not covered yet, return to step 2 with the MPR list and apply
the same procedure to each MPR peer in the list.

76

7. By repeating this procedure, we can cover the NP2 set by using the peers
who have the largest number of connections as MPR nodes.

8. Finally, we can deliver the message to each peer in the network by passing
message only through MPR nodes.

9. We calculate the total number of messages sent to cover all peers in the
network.

In the TBB algorithm, we consider how to more reliably deliver messages to
other peers in presence of faulty peers in the network. The basic procedure of the
TBB algorithm is shown as follows:

1. Assign the trustworthiness value Ti to each peer pi in the network.

2. According to the faulty ratio F and trustworthiness, select faulty peers in
the network. Since the trust value is considered, the peer pi which has the
higher trust value Ti is not be easily fail.

3. Initiate the procedure from initiator peer.

4. Calculates a list NP1 of first neighbor peers of the initiator peer.

5. Obtain a list NP2 of second neighbor peers according to the NP1 peers.

6. Calculate the MPR peers which can cover the NP2 neighbors as follows:

(a) Find a peer in NP1 which has the highest trustworthiness value.

(b) If multiple peers have the same trustworthiness value, take a peer
whose peer ID is the largest.

(c) Mark the peer in the NP2 set which the selected peer can pass the
message thorough, then put the selected peer into the MPR list.

7. After each MPR calculation, the network is checked, if all peers received
the message. If so, terminate the procedure.

8. Otherwise, return to step 4 with the MPR list previously calculated and
apply the same procedure to each MPR peer in the list.

9. By repeating this procedure, we can cover the NP2 set by using peers who
have higher trustworthiness value as MPR nodes.

77

10. After obtaining the MPR list for the initiator peer, we apply the same pro-
cedure to each MPR peer again.

11. Finally, we can deliver the message to each peer in the network by passing
the message only through MPR peers.

12. We calculate the total number of messages sent to cover all peers in the
network.

5.3 Results

We evaluate the algorithms for different faulty ratios F in the network. Figures
5.1 and 5.2 show the numbers of messages with total number n of peers for F =
0.05 and F = 0.1, respectively. Here, in absence of faulty peers in the network,
i.e. F = 0 and with F = 0.05, a message can be delivered to all the peers by
using fewer number of messages in the MPR algorithm than the TBB algorithm.
In the pure flooding scheme, the largest number of messages are transmitted to
deliver messages as shown in Figures 5.1 and 5.2. However, if ten percentages of
the peers are faulty in the network (F = 0.1), a message cannot be delivered to
all the peers in the MPR algorithm, i.e. MPR is not sound. On the other hand,
the TBB algorithm is sound, i.e. a message can be delivered to all the peers with
fewer number of messages than the pure flooding as shown in Figure 5.2. Thus,
the TBB algorithm is more sound, i.e. more reliable and more efficient, i.e. fewer
number of messages are transmitted.

Figure 5.3 shows the average value of network coverage of each algorithms
to the faulty ratio F of the network where number of peers n taken from 100 to
10000, how many peers in the network. In the MPR algorithm, messages cannot
be delivered to all the peers for larger than about six percentages of the faulty peers
in the network (F = 0.06). For F = 0.1, about 40 percentage of the peer cannot
receive messages. On the other hand, in the TBB algorithm, messages cannot be
delivered to all the peers for F > 0.18. For F = 0.27, more than 90 percentages of
the peers can receive messages. Figure 5.4 shows the average value of number of
messages for the faulty ratio F where n taken from 100 to 10000. As shown in the
Figure 5.4, the TBB algorithm can cover the same network with the less number
of messages than the pure flooding and MPR ones. In addition, in reality, the
situation like about 20 percentage of the peers are faulty in a network is unlikely
happens.

78

40000

50000

60000

70000

80000

0

10000

20000

30000

40000

50000

60000

70000

80000

0

10000

20000

30000

40000

50000

60000

70000

80000

100 400 900 1600 2500 3600 4900 6400 8100 10000

Number n of peers.

N
um

ber of m
essages.

Figure 5.1: Number of messages (F = 0.05).

70000

80000

20000

30000

40000

50000

60000

70000

80000

0

10000

20000

30000

40000

50000

60000

70000

80000

100 400 900 1600 2500 3600 4900 6400 8100 10000
Number n of peers.

N
um

ber of m
essages.

Figure 5.2: Number of messages (F = 0.1).

79

0%

Fault ratio F of failure peers in the network.

P
ersentage of netw

ork coverage.

50%

100%

5% 30%25%20%15%10% 40%35% 45%

Figure 5.3: Network coverage to fault ratio.

10000

Fault ratio F of failure peers in the network.

N
um

ber of m
essages.

5% 30%25%20%15%10% 40%35% 45%0

20000

30000

40000

50000

Figure 5.4: Number of messages to fault ratio.

80

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In chapter 1, we discussed background and objectives of this research and the
problems exists in the Peer-to-Peer (P2P) overlay networks and Distributed Agree-
ment Protocols. We also discussed related work and contribution of this disserta-
tion. It shows that variety of factors effect the agreement procedure in distributed
systems but most importantly the way to reliably and efficiently exchange infor-
mation among peers are the most critical one, in order to improve this issue and
improve over all performance of the agreement protocol we introduced trustwor-
thiness based broadcast (TBB) algorithm.

In chapter 2, We discussed how each peer trusts acquaintance peers in a fully
distributed P2P overlay network. First, we defined the subjective trustworthiness
stij(ρ) of a peer pi to an acquaintance pj for an access request ρ issued to an
acquaintance peer. If the acquaintance pj returns a more satisfiable reply to the
requesting peer pij the subjective trustworthiness stij(ρ) is increased. Next, the
objective trustworthiness otij is introduced to show how much the acquaintance
peer pj is trusted by trustworthy acquaintance peers of the peer pi. We defined
four levels of the functions OT0, OT1, OT2, and OT3 to calculate the objective
trustworthiness otij of a requesting peer pi to an acquaintance pj . OT0 stands
for the traditional reputation [26, 29] where messages are flooding in the network.
The higher the function is, the more the objective trustworthiness otij is dominated
by the trustworthiness opinion of the peer pi to the acquaintance peer pj . We
showed that faulty service information from acquaintances can be removed to
calculate the objective trustworthiness in the higher level OT functions through

81

the evaluation. We discussed the confidence of each peer on its own opinion of
trustworthiness of another peer. A peer pi takes the subjective trustworthiness to
an acquaintance pj if pi is the most confident. If the peer pi is the least confident,
pi takes the lowest level of the objective trustworthiness. The confidence of a
peer depends on communication time, frequently, stableness, and number of peers
trusting the peer.

In chapter 3, we mainly discussed the topic of basic agreement protocol. We
introduced the basic procedure of an agreement protocol among multiple peers.
We discussed the problems to appear in the distributed agreement protocols and
showed our proposed algorithms to solve the problems. In human societies, each
person may change its opinion in the agreement procedure. By abstracting the
human behaviors in social agreement procedure, we discussed the flexible agree-
ment protocol in a society of peers. First, values in a domain Di are partially
ordered in existentially (E-) and preferentially (P-) precedent relations →E

i and
→P

i in each peer pi. Each peer just autonomously takes a value by using the E-
and P-precedent relations at each round. The peers may not make an agreement
since a value from a peer might cross a value from another peer even if the values
satisfy the agreement condition. In order to flexibly make an agreement, we need
coordination mechanisms of multiple peers. We proposed four types of coordina-
tion strategies, forward, backward, mining, and observation strategies. If values
taken by the peers do not satisfy the agreement condition, each peer takes a new
value in the forward strategy. After some rounds, some collection of values which
the peers have so far taken may satisfy the agreement condition. We defined a
satisfiable cut which is a tuple of previous values satisfying the agreement con-
dition which is taken by peers. There may be some values which a peer cannot
withdraw. We defined uncompensatable values which a peer cannot withdraw af-
ter showing to other peers. We defined a recoverable cut of the previous values
not only which is satisfiable but also to which every peer can back. If there is a
recoverable cut where each peer can back to the previous round, every peer can
make an agreement by backing to a previous round. Every peer first proposes a
coordination strategy to the other peers. If proposed strategies are consistent, each
peer applies its strategy. Strategies proposed by peers might be inconsistent, i.e.
each peer cannot apply its proposed strategy. We defined the consistent, inconsis-
tent, and conditionally consistent relations among the strategies. We discuss how
to resolve the inconsistency among the strategies.

In chapter 4, we discussed the Distributed Agreement Protocols. A pair of
novel algorithms, Multi-Value Exchange (MVE) and Trustworthiness-Based Broad-
cast (TBB) algorithms, respectively. By taking usage of the MVE and TBB algo-

82

rithms, we improved the efficiency of the most significant part of the agreement
procedure, the value exchange phase. In the TBB algorithm, an efficient and reli-
able way to broadcast messages to all the peers in a group to make an agreement is
discussed. We introduced the novel trustworthiness concept of neighbor peers and
discussed the trustworthiness-based broadcast (TBB) algorithm to broadcast mes-
sages. Here, only more trustworthy peers forward messages and less trustworthy
peers do not forward messages. By making trustworthy peers forward messages
to other peers, we can remove effect of faulty peers to deliver message to all the
peers.

In chapter 5, we evaluated the proposed TBB algorithms. In order to show the
reliability and efficiency of the algorithm we compared the proposed TBB algo-
rithm with the multipoint relay (MPR) algorithm and pure flooding. The evalua-
tion result shows that, with more than five percentage faulty peers in the network,
the MPR algorithm is not able to deliver the message to all peers in the network,
i.e. not sound. On the other hand, the TBB algorithm can still deliver the mes-
sage to the all peers in the network. Furthermore, about 22 percentages fewer
number of messages are transmitted to deliver a message to all the peers than the
traditional pure message flooding.

The concepts, algorithms, implementation, and evaluation of the agreement
protocol discussed in this dissertation can be not only theoretical but also practical
foundation to design and develop various of applications on P2P overlay networks.

6.2 Future work

In this dissertation, we evaluated the proposed Trust-based Broadcast (TBB) al-
gorithm in the simulation which was discussed. To gather more real world data
further more evaluation is suggested, like in the NS3 [41], Neko [39, 40] network
simulators. Therefore, implementation of our TBB algorithm for large-scale P2P
environment is the issue for our future work.

83

Bibliography

[1] C. Shirky, “What is p2p ... and what isn’t”,
http://openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html, 2000.

[2] I. Foster and C. Kesselman, The Grid2: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 2003.

[3] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling
Scalable Virtual Organizations”, International Journal of High Performance
Computing Applications (IJHPCA), 15(3), 2001, pp.200-222.

[4] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-to-Peer Con-
tent Distribution Technologies”, ACM Computing Surveys, 36(4), 2004,
pp.335-371.

[5] Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni, “A Distributed Approach to Solv-
ing Overlay Mismatching Problem”, Proceedings of the 24th IEEE Inter-
national Conference on Distributed Computing System (ICDCS2004), 2004,
pp.132-139.

[6] D. Winer, “DaveNet: What is p2p?”,
http://scripting.com/davenet/2000/09/20/whatisp2p.html, 2000.

[7] Napster, http://www.napster.com/.

[8] M. Ripeanu, “Peer-to-Peer Architecture Case Study: Gnutella Network”,
Proceedings of the International Conference on Peer-to-Peer Computing
(P2P2001), 2001, pp.99-100.

[9] LimeWire, http://www.limewire.com/.

[10] Kazaa, http://www.kazaa.com/.

84

[11] Freenet, http://www.freenetproject.org/.

[12] R. Dingledine, M. J. Freedman, and D. Molnar, “The Free Haven Project:
Distributed Anonymous Storage Service”, Proceedings of the Workshop on
Design Issues in Anonymity and Unobservability (DIAU200), 2000, pp.67-
95.

[13] K. Aberer, “P-Grid: A Self-Organizing Access Structure for P2P Informa-
tion Systems”, Proceedings of the 9th International Conference on Cooper-
ative Information Systems (CoopIS), 2001, pp.179-194.

[14] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-peer Information
System Based on the Xor Metric”, Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS’02), 2002, pp.53-65.

[15] S. Ratnasamy, P. Francis, and S. Handley, “A Scalable Content-
Addressable”, ACM SIGCOMM2001, 2001, pp.161-172.

[16] A.I.T Rowstron and P. Druschel, “Mapping the Gnutella Network”, IEEE
Internet Computing, 6(1), 2002, pp.50-57.

[17] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applica-
tions”, IEEE/ACM Transactions on Networking (TON), 11(1), 2003, pp.17-
32.

[18] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: a fault-tolerant
wide-area application infrastructure”, Computer Communication Review
(ACM SIGCOMM), 32(1), 2002, pp.81.

[19] ICQ, http://www.icq.com.

[20] Jabber, http://www.jabber.org.

[21] J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski, P. R. Eaton, D. Geels,
R. Gummadi, S. C. Rhea, H. Watherspoon, W. Weimer, C. Wells, and B.
Y. Zhao, “OceanStore: An Architecture for Global-Scale Persistent”, Pro-
ceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-IX 2000), 2000,
pp.190-201.

85

[22] D. P. Anderson, J. Cobb, E. Korpella, M. Lebofsky, and D. Werthimer,
“SETI@home: An Experiment in Public-Resource Computing”, Commu-
nications of the ACM (CACM), 45(11), 2002, pp.56-61.

[23] JXTA, http://www.jxta.org/.

[24] I. Clark, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A Distributed
Anonymous Information Storage and Retrieval System”, Proceedings of
the Workshop on Design Issues in Anonymity and Unobservability, 2000,
pp.311-320.

[25] A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-Peer Sys-
tems”, Proceedings of the 22nd IEEE ICDCS, 2002, pp.23-32.

[26] F. M. Cuenca-Acuna, R. P. Martin, and T. D. Nguyen, “PlanetP: Using Gos-
siping and Random Replication to Support Reliable Peer-to-Peer Content
Search and Retrieval”, Technical Report DCS-TR-494, Rutgers University,
2002.

[27] D. E. Denning and P. J. Denning, “Data Security”, In ACM Computing Sur-
veys, 1979, pp.227-249.

[28] T. Egemen, N. Deepa, and S. Hanan, “An Efficient Nearest Neighbor Al-
gorithm for P2P Settings”, Proceedings of the 2005 national conference on
Digital government research, 2005, pp.21-28.

[29] D. S. Kamvar, T. M. Schlosser, and H. Garcia-Molina, “The Eigentrust Al-
gorithm for Reputation Management in P2P Networks”, Proceedings of the
12th IEEE International Conference on World Wide Web, 2003, pp.640-651.

[30] F. Lau, S. Rubin, M. Smith, and L. Trajkovic, “Distributed denial of service
attacks”, In Proceedings of 2000 IEEE International Conference on Systems,
Man, and Cybernetics, 2000, pp.2275-2280.

[31] Y. Nakajima, K. Watanabe, N. Hayashibara, T. Enokido, M. Takizawa, and
S. M. Deen, “Trustworthiness in peer-to-peer overlay networks”, In Proceed-
ings of the IEEE International Conference on Sensor Network, Ubiquitous,
and Trustworthy Computing (SUTC 2006), 2006, pp.86-93.

[32] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A Scalabel
Content-Addressable Network”, In Proceedings of the 2001 conference on

86

Applications, technologies, architectures, and protocols for computer com-
munications (SIGCOMM ’01), 2001, pp.161-172.

[33] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Lo-
cation and Routing for Large-scale Peer-to-Peer Systmes”, In Proceedings
of IFIP/ACM International Conference on Distirubuted Systems Platforms
(Middleware), 2001.

[34] K. Watanabe, T. Enokido, M. Takizawa, and K. Kim, “Charge-based Flood-
ing Algorithm for Detecting Multimedia Objects in Peer-to-Peer Overlay
Networks”, In Proceedings of the 19th IEEE Conference on Advanced Infor-
mation Networking and Applications (AINA 2005), 2005, 1, pp.165-170.

[35] K. Watanabe, N. Hayashibara, and M. Takizawa, “CBF: Look-up Proto-
col for Distributed Multimedia Objects in Peer-to-Peer Overlay Networks”,
Journal of Interconnection Networks (JOIN), 2005, 6(3), pp.323-344.

[36] K. Watanabe, Y. Nakajima, T. Enokido, M. Takizawa, “Ranking Factors in
Peer-to-Peer Overlay Networks”, ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 2007, 2(3).

[37] L. Xiong and L. Liu, “PeerTrust: Supporting Reputation Based Trust for
Peer-to-Peer Electronic Communities”, IEEE Transactions on Knowledge
and Data Engineering, 2004, 16(7), pp.843-857.

[38] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. “Tapestry: An Infrastruc-
ture for Fault-resilient Wide-area Location and Routing”, Technical Report
UCB/CSD-01-1141, University of California, Berkeley, 2001.

[39] P. Urban, X. Defago, and A. Schiper, “Neko: A Single Environment to Sim-
ulate and Prototype Distributed Algorithms”, Journal of Information Science
and Engineering (JISE), 18(6), 2002, pp.981-997.

[40] P. Urban, X. Defago, and A. Schiper, “Neko: A Single Environment to Sim-
ulate and Prototype Distributed Algorithms”, In Proceedings of the 15th In-
ternational Conference on Information Networking (ICONIN2001), 2001,
pp.503-511.

[41] The NS-3 network simulator, http://www.nsnam.org/.

87

[42] Aikebaier, A., Enokido, T., Takizawa, M.: Checkpointing in a Distributed
Coordination Protocol for Multiple Peer Processes. In: Proc. of the 2nd In-
ternational Conference on Complex, Intelligent and Software Intensive Sys-
tems (CISIS 2008), pp. 48–54. (2008)

[43] Aikebaier, A., Hayashibara, N., Enokido, T., Takizawa, M.: A Distributed
Coordination Protocol for a Heterogeneous Group of Peer Processes. In:
Proc. of the IEEE 21th Conference on Advanced Information Networking
and Applications(AINA 2007), pp. 565–572. (2007)

[44] Aikebaier, A., Hayashibara, N., Enokido, T., Takizawa, M.: Making an
Agreement in an Order-Heterogeneous Group by using a Distributed Coor-
dination Protocol. In: Proc. of the 2nd International Workshop on Advanced
Distributed and Parallel Network Applications (ADPNA 2007), CD-ROM.
(2007)

[45] Corman, A.B., Schachte, P., Teague, V.: A Secure Group Agreement (SGA)
Protocol for Peer-to-Peer Applications. In: Proc. of the 21st International
Conference on Advanced Information Networking and Applications Work-
shops (AINAW’07), pp. 24–29. (2007)

[46] Ezhilchelvan, P., Morgan, G.: A Dependable Distributed Auction System:
Architecture and an Implementation Framework. In: Proc. of the IEEE 5th
International Symposium on Autonomous Decentralized Systems (ISADS),
pp. 3–7. (2001)

[47] Gray, J., Lamport, L.: Consensus on Transaction Commit. ACM Transac-
tions on Database Systems (TODS) archive, vol. 31(1), pp. 133–160. (2006)

[48] Hurfin, M., Raynal, M., Tronel, F., Macedo, R.: A General Framework to
Solve Agreement Problems. In: Proc. of the 18th IEEE Symposium on Reli-
able Distributed Systems (SRDS), pp. 56–65. (1999)

[49] Kling, R.: Cooperation, Coordination and Control in Computer-supported
Work. Communications of the ACM, vol. 34(12), pp. 83–88. (1991)

[50] Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, vol. 4(3), pp. 382–
401. (1982)

88

[51] Lee, P., Lui, J., Yau, D.: Distributed Collaborative Key Agreement Protocols
for Dynamic Peer Groups. In: Proc. of the 10th IEEE International Confer-
ence on Network Protocols, pp. 322–331. (2002)

[52] Sabater, J., Sierra, C.: Reputation and Social Network Analysis in Multi-
agent Systems. In: Proc. of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems, part 1, pp. 475–482. (2002)

[53] Shimojo, I., Tachikawa, T., Takizawa, M.: M-ary Commitment Protocol with
Partially Ordered Domain. In: Proc. of the 8th International Conference on
Database and Expert Systems Applications (DEXA), pp. 397–408. (1997)

[54] Skeen, D.: NonBlocking Commit Protocols. Proc. of the ACMSIGMOD In-
ternational Conference on Management of Data, pp. 133–142. (1981)

[55] Upadrashta, Y., Vassileva, J., Grassmann, W.: Social Networks in Peer-to-
Peer Systems. In: Proc. of the 38th Hawaii International Conference on
System Sciences(HICSS-38 2005), CD-ROM. (2005)

[56] Montresor, A.: A robust protocol for building superpeer overlay topologies.
In: Proc. of the 4th International Conference on Peer-to-Peer Computing,
pp. 202–209. (2004)

[57] Two-phase commit protocol. http://en.wikipedia.org/wiki/Two-
phase commit protocol.

[58] Upadrashta, Y., Vassileva, J., Grassmann, W., “Social Networks in Peer-to-
Peer Systems”, In Proceedings of the 38th Hawaii International Conference
on System Sciences(HICSS-38 2005), 2005.

[59] Qayyum, A., Viennot, L., Laouiti, A., “Multipoint relaying for flooding
broadcast messages in mobile wireless networks”, In Proceedings of the
35th Annual Hawaii International Conference on System Sciences, 2002,
pp.3866-3875.

[60] Ripeanu, M. and Foster, I., “Mapping Gnutella Network”, IEEE Internet
Computing, 2002, pp.50-57.

89

